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PREYACE

THE philosopliy of mathematics has suffered from a
superfluity of technicalities. This is a pity because
it increases the difficulties of acquaintance with that dehghtful
subject. But a more seriows consequence is the lack Qf
co-operation and mutual criticism between different grQups
of experts in this field. In England, for examplen] th‘s fame
of Russell and Whitehead’s justly celebrated Prmca,pm
Mathematica, is accompanied by almost con??téte neglect
and ignorance of the equally interesting wa'Ngso.f the Formalists
and Intuitionists on the Continent.  Thete is much to be
said in extenuation for this state of’a:ﬁhirS, for the relevant
papers are scattered in forelgn perlodlca].s untranslated

ib ra Ol.g I.l'l
often difficult to obtain, and are unmtelfjgllﬂje wit out an
extensive acquaintance w1t}k\he terminology and context of
their authors’ opinionsy \To fill this gap in the literature of
the nature of math;-zpahcs would be a work of many years,
and the pages whigh' follow are intended to be no more than
an introductid@)to the whole subject.

I have .Qq'd} two aims in mind: to present a considered
criticals ’e§position of Principia Mathematica and to give
suRpl\nentary accounts of the formalist and intuitionist
dagtrines in sufficient detail to lighten the paths of all who
may be pravoked to read the original papers. Various innova-
tions have been introduced and, though I have not avoided
technicalities where they were necessary, all technical terms
and symbols have been as far as possible defined. So I
hope this book may be of use not only to specialists in
mathematical logic but to philosophers and others who

X1
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xiv PREFACE

begin to read it with less knowledge of the complexities of
symbolism. In order to assist readers who may wish to omit
sections chiefly concerned with technicalities or familiar
definitions, I have adopted the device of adding to many
sections a summary or comment, printed in small type
immediately after the corresponding subheadings; and~l
would encourage readers new to the subject to read \fhe
introduction and these scattered comments before r{eafhﬁg’ the

N

remainder of the text.

I wish to express my thanks to Professor }}qr%agfs for much
helpful information concerning the fonna]jst§\,{b Dr. Chwistek
for copies of his papers, to the Aristotelian Society for permis-
sion to incorporate part of a papergeadin 1933, to Professor
L. S. Stebbing, Dr. J. TL Woo%ﬁg\and Miss M. MacDonald
for reading the following pdges in proof and for much
encouragement, and to ;IS‘:" Black, J. M. Burnett, and
L. E. R. Mowat fo;gfgé:sistance with the transcription of
‘ma‘ﬁﬁ%‘%rﬁpiibrary‘grg,fﬁ _
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THE NATURE OF MATHEMATICS
A CRITICAL SURVEY

INTRODUCTION

The task of philosophy, gua eritic, is to exhibit the structure aix t:r:e y

sciences by discriminating between hypotheses and prmmpleabgtc.
N

THE successes of the scientific method have led phll’osophers_
to dream of a scientific philosophy which, by sBorrewing the
technique of the esta,bhshed sciences, mqght hope to reach
something of their certainty and (Gimulative success.
Philosophy, however, in its function ot critic—and it is with
that aspect of philosophy that we‘s‘hall be here concerned—

cannot desire to compete wkh “the sifefivedbraebssoveyin
of empirical generahzatloh\\s the work of the experunental_
sciences, the formulats.gn of self-evident laws belongs to
mathematics, and{hoth are outside the scope of critical
philosophy. Its\ob]ect is to clarify by criticizing knowledge
already org@rﬁzed into systems; and of these it prefers the
older, ?x;e developed, sciences, which combine extreme
compleﬁ‘ty of theory with consistency in practice. For
the"é quahtles are associated with a high degree of utility
S/ practical applications and induce in the creators and
admirers of the science a state of self-consciousness inviting
the apologetic services of philosophy. Ineach of these respects
the science of mathematics is a most admirable field for the

exercise of applied philosophy.

The implied assertion that the established sciences are
highly consistent needs to be qualified by the explicit

I B



z THE NATURE OF MATHEMATICS

recognition that no science which is still in the process of
developing is more than partially seli-consistent. Yor scientifie
research is characterized by the choice between mutually
inconsistent theories, lack of relevant data leading to the
postulation of provisional hypotheses which subsequently
require to be limited in their application or even totally
abandoned. : N
Postulates need to be distinguished as h\rpotfzg‘seg. And
principles ; for, of those postulates which arc not ilimately
rejected but are incorporated into the rnam\\bodv of the
science as knowledge accumulates, sochb\xscome theorems
or laws while others, through their sdsgess in stimulating
fruitful research, gradually acquire ,tﬁ?“&;haraeter of general
principles, which embody coz;‘&épts; " fundamental to the
science. Hypotheses, that is fmszulates which may become
laws, can be disproved ca’s{r&‘fliy’ enough, but principles, since
they control the mannq‘i;’ #n which problems are formulated
SO déiﬁl}g;l&il ?‘g%oévgd are formally not susceptible to disproof,
and their re}ectlon\uaqun"es a violent revolution in the methods
of the sciencd ™
Vaguene§syof the concepts which occur in the normative
prmc;pleb /makes their exact formulation an ideal which is
apgro}ched by gradual approximation; clear understanding
,Q{the concepts used occurs late in the history of a science.

\ Postulates and concepts are created not by the common

agreement of scientists but by scattered individuals or small
groups. At the moment of conception concepts are formless,
implications of theories are only partially understood ; later,
theories produced by specialists in one department of the
science are found to conflict with the postulates of other
departments, in themselves equally plausible or as frmly
established. The necessity of resolving such discords reacts
upon the concepts of the science, leads to more exact formula-
tion of the postulates and clearer understanding of the concepts

AT v e o e o
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INTRODUCTION 3

involved. Even at mements of apparently extreme stability,
the equilibrium of scientific opinion is the immobility of a
body under the action of mutually opposing forces.

This state of affairs is a commonplace in the experience of
any scientific researcher, yet it is more than that private
confiict of ideas in the inventor’s mind which is part of the
process of invention. The contradictions inhere in the
very principles of the science, produced by the inevitable

vagueness of the concepts it employs. However much reflection® D

and experiment by the inventors of theories may mitig*ale
the opposition of mutually contradictory opinions by m%hﬁca—
tion and elimination of obscurity, contradictions rel\nam even
in scientific theories which find widespread atceptance. In
the theories of all branches of science wheKe\progress is still
being made, in biology, physics, chemistry, mathematics,
there are striking paradoxes and contradictions to be found,
and those sciences alone are coxzipfe"tely consistent which,
like anatemy, have degenerafed into catalogues. It is
important to recogmize and AiSRRy AT BT R ol
produced by 1mprec1s Aormulation of concepts; they are
often a sign of v1tal1 {and indicate that the scientist’s capacity
for recognizing relevance and unity in a confusing multiplicity
of heterogeneoﬁs phenomena is ahead of the careful expression
of its dlscogenes
Nawhgie have such contradictions been more frequent
than(i’n mathemath, nor has progress in any science been
,l::{ore steady. Gauss and Fermat, among scores of other
& ;famous names, are sufficient jllustrations of famous
mathematicians who were able to obtain, by apparently
fallacious reasoning, valid results of the highest importance
in subsequent mathematical researches.
The title of  The Foundations of Mathematics*’ which
the philosophical analysis of mathematics has often received
is therefore a misleading one if, taken in conjunction with
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these contradictions, it suggests that the traditional certainty
of mathematics is in question. It is a fallacy to which the
philosopher is particularly liable to imagine that the
mathematical edifice is in danger through weak foundations,
or that philesophy must be invited like a ncwer Atlas to
carry the burden of the disaster on its shoulders.

The progressive elimination of contradictions in mathe;
matics is the work of mathematical insight, a CO‘ltlmlcqu
process which can be clearly traced in successive mdthcx;ﬂatlcal
researches. Philosophical analysis has the equal[{ Jyaluable
aim of exhibiting the structure of mathematics’ first, the
internal structure, by showing the 1nter<jlepcndence of
theorems, axioms, and definitions, dis‘r,(r}’guishing between
hypotheses and principles, etc. ; seéondly, the external
structure, the relation of mathelgla’slcal knowledge to mon-
mathematical. o\ ¢

NN

Exhibition of internal stmcture has technical importance
for matiremlibics by piniipg to the rejection of unnecessary
postulates and again 6 the recognition of unexpected analogies
between the anatdmies of different mathematical disciplines.
Such morphq:lé:g‘ical investigations require mathematical
technique, ¢ and particularly the extensive use of symbols.
For ma{hemat;cs is the study of all structures whose form
cag be expressed in symbols, it is the grammar of all symbolic
syi\tems and, as such, its methods are peculiarly appropriate

N Sb the investigation of its own internal structure. But the

N ’
N\ S

W™ structure of mathematics, though implicit in its theorems, is
not clearly shown and tends to be confused even by those who
are most familiar with it. It is the philosopher’s task to
exhibit the inherent structure and to invent a suitable
symbelism for its expression. Elimination of unnecessary
postulates and the explicit exhibition of the structure of
mathematics prevents confusion of purpose within the science
and adds to the asthetic satisfaction of contemplating it.
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The technique required for this type of analysis does not,
in the present writer’s opinion, require the acceptance of any
metaphysical dogmas; in its systematic aspect it can be
correctly regarded as a branch of applied mathematics if that
science is not restricted to physical applications but is allowed
to include any subject-matter amenable to mathematical
investigations ; in its philosophic aspect it is a branch of e
applied logic.! The details of such a technique must, however, N
be reserved for future exposition. The purpose of this SN (2
is only to report and criticize attempts that have already‘
been made to analyze mathematics. y \\

Philosophical analysis must take into account \Iack of
structure for, in so far as a science contains 1ncon51stenc1es,
it cannot be considered as a system, it is to\hrat extent in
process of acquiring a form and not in possessmn of one.
Philosophers, however, under scholastk. Influences, have too
often overlooked this fact and ¢ hav:a been suspected in
consequence by the practising sclcntlst For, when faced with
the difficulty of clarifying existing KknawiEEEs HLbranpeadn
is great to find compensatﬁm\m admiring the complex structure
which represents parfial” success and to supplement it by
unwarranted extrapolatmn In the case of one’s own
philosophic spstemn familiarity or the inertia of habitual
thought proc}esses inspires exaggerated respect and tempts
the p pher to bring the technique of theology to the
help t}f the analytic method. God arrives to solve the
dlﬂ“}CllltleS of Berkeleian idealism or Bertrand Russell in less

\atnbmous times invokes the Axiom of Reducibility.

In mo branch of critical philosophy is this danger greater
than in the analysis of mathematics, a discipline which
acquires from its subject-matter a dangerous facility in the

manufacture of vast systems of symbols whose architectonic

1 For definition of the distinction between the philesophic and
systematic aspects of any study of. infra, p. 141,
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complexity is occasionally of the same order as the labour
required for their intelligent manipulation.

Recent tesearch in the philosophy of mathematics has
shown that each of the three principal theories of the nature
of mathematics which are discussed in this book contains
serious imperfections, some of which may be attributed to
the causes indicated above. With this warning to the rea.c@\
we may conclude these generalities and proceed to g\pre-
fiminary summary of the three main types of thcogis;\x?ﬁich

a W

are to be the objects of our investigation. AR
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Preliminary Survey of Three Types of Opinions Considered

Before commencing a detailed account a short description
of the general features of the three main schools of
mathematical philosophy with which we shall be concerned
and their relations to one another may facilitate the orienta-
tion of the reader who is unfamiliar with the subject.

The three schools of thought chosen on ggecount of theii-“
importance and influence are usually disting‘ﬁled as Log{stzc
Formalistic, and Intuitionist, their hest know }wmg
exponernts being Bertrand Russell, David Hilbert, and LEJ _
Brouwer respectively. Their doctrines dlﬁQ\ ,As much in
methods of approaching problems as in ng ¢onclusions,

{

N/
%

LogisticOS

N www.dbraulibrary erg.in
Q‘hc logistic thesis : pure ma.théma.tms isa branch of logic. j

#

The programme of the\loglstm school has heen expressed
by Rucsell as follows \“ Pure Mathematlcs is the class of all

The two pro osmons , and _neltlle_r p mor g contams any
constapts, €x ”except loglcal constants. And Ioglca.l constants

arc ﬁ i hotions deﬁg@le__m terms of the following : 1mp11ca-
y tlo.n the relation of a term to a class of whichitisa member,

the not1on of suok tkai the notlon 0[ relatmn and such further

7
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mathematics are propositions of logic, they state relations
between prop051t10ns whose content has been abstracted to

or, etc -

On this view, all mathematical concepts such as wumber,
differential coeﬁcwnt, etc., must be capable of definition in
terms of logical concepts, pure mathematics becomes a bra\
of logic and the distinction between the two sub]ect
merely one of practical convenience. Much of Russ&ﬂ 5 work
like that of his collaborator, Professor \thehead, and his
great predecessors, Frege and Peano, was:dévo’ccd to per-
forming the reduction of mathematical\d c\lcept:. to logical
concepts, The culminating ach1eve{nent of this school is
Russell and Whitchead’s Pmnczpmﬁi" athematica, 2 massive
work of bewildering cornple;{{fby sbut great logical beauty,
which purports to be a detaﬂed reductlon of the whole of
. pure mathematics to loglc
www.dbraulibrary. org m

~8%" Formalism
¢\

O
The formalist thesis § pure mathematics is the science of the formal

struLtu»re of symbols.
\ \

’Mn_wt/ﬁnuwmmat mathematical
\\G'oggp_tscan.be_tedlud_tﬂigmﬂgomﬁpis_a_d agsert that

’“\Cj? the many difficultics of logic which beset the path . of the _
<\: v/ logistic phﬂosophles ha.ve nothm,ar to do with mathematics.

) 2

objects. Numbers are the sqpplest . structural _;_)_E-Q_P_crtl_es pf_
objects and are thernselves ol_njgcts With _new. prciperties )

recognizing and allo_w_lﬂg_ for the gr@_l_eyant features of the

signs he uscs. But provided he has an adequate system of
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-PRELIMINARY SURVEY )

signs he need no longer worry about their meaning since he
can see in the signs themselves those structural properties
which interest him. Hence the formalists emphasize the
importance of the formal characteristics of the mathematician’s

s1gn-1anguage those which are independent of the meanmg

he may want to : attach to them. This . {s ot _to say that
mathematms is a meamnﬁless game as_the formalists have

often been_ acc:used of asserting ; they say that mathematics

is concerned with the stru structural properties of f symbols (and D

hence of all objects) mdependent of thelr _meaning. ’I‘hls

view has proved very fruitiu fruitful in geometry 3 “and 1‘:5_51}@ in_

that field is largely respon31ble for its wide _Qread gogglanty

qymbohsm tha:n the lqgl.stlcm.ns ; the contrad:ctlons in pure
_mathematics can be remgoved, they_sa ghly’ by the provision
of a symbolism which has been demofis t‘rated to be foolproof

The demonstratmn itself cannof, b ‘be carned throuﬁh by the
uge of symbols 1ndag_ndemlgz_of_thewmeamng,ﬂ these
symbols in turn_ would._haye Y to_he Jegitim uﬁi‘zlélﬁ‘ 68 1 Bd

infindtum ; _but_they de and 2 demonstration_using no_

process o of thought es:\sw 1allX more comghcated than that by
which we see that two things and two ) things together make_

four, Most N the recent work of the formalists has_been_

directed. tm@-a.rds an. _elementary _groof of the validity of

mathm;gahcs from this “angle. _So far their success _has been

only\pa]:tml ~and there are grave, ‘doubts whethér thelr

p:ogramme can be con51stently .carried through.

Intuitionism
The intuitionist thesis: pure mathematics is founded on .a basic
intuition of the possibility of constructing an infinite series of
numbers.

The formalists lay the emphasis on symbolism, the
intuitionists on thought. For the latter the body of
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mathematical truth is not the timeless objective structure
that it appears in the formalist and logistic philosophies,
Mathematics, regarded as a body of knowledge, grows, it is
a becoming, a process, which can never be completely
symbolized—and even this manner of regarding it is perhaps
dangerously abstract. Mathematics should be regarded as
a social activity by which individuals organize phenomena.
in their most general aspect to satisfy their necds, I{QI:leS\
it is not enough to have a symbolism for Imthomit&&al
thoughts ; they are independent of the partmular fang uage
used to express them. What is absolutely nece{garv i that
the language should significantly eXpress, ‘bhtmghh We
must be able to stop at every point in niatiématics and see
the state of affairs which is expressed\és clearly as we can
see the fact that to a heap of ob;epts, o matter how many,
it would always be possible to a%id one more and again one
more in a never-ending process,, ~Knowledge of this particular
PIQSESS) bﬂ}ﬁmﬁ%l?@g,gf }ndeﬁmtely extending a series of
objects by the addition“of extra members, which may be
expressed alternativé:[y with sufficient precision for present
purposes as dircé{\kxnowledge of the sequence of the natural
numbers, is ¢ (termed the ‘ Urintuition’ {basic intuition} by
Brouwer;, qt is fundamental and irreducible in his philosophy.
His¢ én‘lphasls‘ on the necessity for mathematical state-
mé;{ts, to have a clear * intnitive * meaning leads him to
gﬁect general assertions such as ‘‘ There is a prime number

, the sum of whose digits is divisible by 1004 " on the ground

that they are neither true nor false but meaningless. General
statements have meaning, he asserts, only when a definite
construction is known by which they might in theory {though
not necessarily in practice) be tested for truth or falsehood
with the certainty of obtaining an answer. So when and
if a prime number is ever found the sum of whose digits is
divisible by 1004 the assertion given above (or strictly the
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assertion which will then be expressed by the same words) will
have sense. If general propositions whose truth can be tested
by a known procedure be called constructive propositions it
is easily seen that the contradictory of a constructive proposi-
tion is not in general constructive. This doctrine has often
been misunderstood to amount to a denial of the law of the
excluded middle that a proposition is either true or false.

N

Mutual Relations of the Three Schools Drd
N )

The logistic and formalist programmes have énormous
difficulties to overcome if they are to be ultimately successful.
For the logistic reduction of mathematics ~(&;logic: breaks
down at a crucial point and a complete {orgjné.ﬁst proof of the
consistency of mathematics is probably iffipossible. But the
intuitionist dectrines require the }a{tger part of mathematics
to be rewritten, reject proofs t}u}:f‘have long been accepted,
abandon large portions of phre’ mat HeIRA s uHd e clac
a disheartening and algn(ést impracticable complexity into
those domains whieh’\’aré remodelled.

The mutual intéraction of the three movements are, briefly,
as follows : thddpgistic thesis of the necessity for symbolizing
mathematic&i~ ‘proof has been completely adopted and
improvthﬁf important technical aspects by the formalists,
who, qb}the Jogical notation evolved in essence by the logistic

) Ssrl{g‘n::l'. The intuitionists have, on the whole, been negatively
\\fnﬁﬁenced, reacting away from symbolism in consequence
of the logistician's failures, but they toc are beginning to
produce an intuitionist formal logic. Research by the
formalists, especially in geometry, has undermined the
Kantian conception of space, and, by incidentally revealing
the technical deficiencies in the logistic systems has largely
destroyed what may be called the theological view of
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mathematics with its unrestrained belief in such transcen-
dental entities as transfinite numbers. The influence of
intuitionism has been very marked upon the other systems
it can be clearly seen in Hilbert’s insistence on the need for
finite non-formal proofs of the consistency of mathematics,
ie. what are now called metamathematical proofs, and also
in modern demands for constructive development of su@
subjects as the theory of sets of points. O
These three types of theories modify and msplre all the
rest, but eclectic compromises are common. By ugmc some
of the inmumerable modifications which a dﬁ(}wd of com-
mentators and critics have devised it is' Possible and quite
usual for the defenders of almost any, philosephy of mathe-
matics to shift their ground sufﬁcien:flxyi‘to meet all criticisms.
While drawing attention to such \sophistrics we must not fall
into the opposite extreme ofy judgmg philosophies of mathe-
matics by their failures and omissions. We propose to judge
\bhemii;ﬂhﬁbﬁ&ﬂﬂrztygﬁﬂﬁalyse the whole field of mathematical
fact and by the extent to which they can be formulated as
precise and intefn ly consistent systems. This is a test
which requirg:sQ a clearer statement of the opposing doctrines -
than their; expositors have always provided, a test which
none O{the three philosophies here considered triumphantly

S\§ﬁes
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SECTION I: LOGISTIC

Tuis section will be 'devoted to a detailed description of a

group of theories concerning the nature of mathematics which
assert that mathematics should be considered as a branch of
logic. If this opinion is correct the distinction between the

N

C\

“two sciences, though venerable and established, is quite )\

arbitrary., This claim is based on proofs which seek to()

demonstrate in detail how the reduction of mathemat1<<to
logic is accomplished, ¢*C

Any philosophy of mathematies which includes this doctrine
will for convenience of reference, and withy the reader’s
permission, be qualified in this book by the ad]ectwe logistic .
This usage of the term is frequent in ’the literature of the
subject and it is sufficient to mentlon another less frequent,
use of the same term, viz. as a, su,bstantwe dencting ' the
science which deals with types.df orddras SRR 'EE FY TR
Survey of Symbolic Logzc\.g.\ 3), to forestall any confusion
between the two meanifigs. The latter use of the word is
based upon and 1mph% a distinction between logistic, the
science which trcats~0[ all types of order, and symbolic logic,
that section oéioglstlc which is concerned with the specific
types of order’exemplified by propositions; but our use of
the wor ‘w il not presuppose that this distinction is recognized
by the plulosophers whose theories will be termed logistic.

Vﬁ»e commence with a brief historical summary of the
\éws under consideration.

History of Logistic Views of Mathematics
A notice of the chief logistic writers from Leibniz to thtgensteih.
The beginnings of logistic philosophies of mathematics are

to be found in the gradual application to logic of 2 symb"hc

15
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technique modelled upon the parallel use of symbols in
mathematics. In its later stages this process was accompanied
by extensive alterations in the traditional Aristotelian logic,
by the introduction of many more propositional forms than
Aristotle or those who expounded his logic recognized. This
in time presented fresh opportunitics for the application of
symbolic technique, until finally systems of symbols were®
invented of sufficient generality to be used in the attemp
to reducé mathematics to logic. ;"‘f K

A conveénient starting point for the present briek mention
of the landmarks of this process of developm(;rit\\ts made by
Leibniz, whose technical researches in symb}liém preceded
and often inspired the long series of invgn,toxzs who perfected
the algebra of logic. His work contaﬁlgd the germ of the
entire logistic conception; it is o) mere coincidence that
many of the logistic philosopheys;ﬁhd themselves sympathetic
to Leibniz and inherit thé, tharacteristic atomism of his
wycstpem,ﬁl;}raulibl'::'my.ol'g.ir)f:'::N

The significance foaioufpurposes of Leibniz’s studies in the
algebra of log'ic,"{'l,ie in the fact that no proof with any
pretensions tp‘?lgour of the thesis that mathematics can
be reduced, w6 logic is possible without a well-developed
symboli m\ and calculus for logic itself. Statements occurring

logie must be systematically symbolized in order that

‘Qe w'relationships to mathematical theorems should become
S#pparent. Leibniz, a mathematician of genius as well as

a philosopher, was eminently fitted to begin the task of
inventing the algebra of logic and his papers 2 show him to
have made several attempts though with other motives. .

Subsequent writers, of whom the most important are De
Morgan (Formal Logic, 1847), George Boole (An Investigation
into the Laws of Thought, 1854), E. Schroder (Voriesungen

1 The Axiom of Reducibility is a generalization of the Leibnizian

principle of the identity of indiscernibles,
L Ci. C. I. Lewis, of. cif., for further details.
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siber die Algebra der Logik, 1890-1905), and C. S. Peirce (see
bibliography), by their elaboration of the algebra of logic
fulfilled Leibniz’s dream of a Characteristica Universalis, a
calcnlus of reasoning suited for the logical analysis of concepts
and the structure of scientific systems, and provided the
necessary technical equipment for the logistic school. Schrider
and Peirce emancipated symbolic logic not only from the

Aristotelian view which permitted only the subject- predicate: Q

form for propositions but also to a great extent from the}
insistent preoccupation with mathematical analogies, hich
retarded the early advance of the subject ; the w:};{ i3 clear
for the actual analysis of mathematics. The fitshimportant
work of this second period was accomplishet':l\bg{;R. Dedekind
(Was sind und was sollen die Zahlen ?, 1888), who supplied
the now famous method of defining*xedl numbers in the
mathematical continuum in terms o‘f‘th‘é' rational or fractional
numbers. His work may be rega.rded as a continuation of
Weierstrass's movement {o ai'lthmeww &F}g‘i{%&}gﬁgf 0'clhat
is to reduce all pure mathematics to the study of the propertles
of integers ; for after e}@\tmd the study of irrational numbers
could be replaced by the study of certain classes of fractional
numbers ; and e reduction of the study of fractional
numbers {0 {hat of integers presents no difficulties and had
already, Beett accomplished.

Tl'm\'?}eﬁ.mhon of real numbers by ‘ Dedekind section’ as
h}g‘method is called, although accepted by mathematicians
“and used as the very foundation of the modern theory of
functions, had to meet serious crificism which subsequently
led to attempts at improvement by the logistic philosophers.

The next works of historical importance are Frege's
Begriffsschrift, 1879, Grundlagen dev Arithmetik, 1884, and
Grundgeseize dev Avithmetik, 1893-1903. The last two books
completed the reduction of mathematics by defining the

rational numbers in terms of logical entities. Unfortunately
<

~

N
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Frege did not use Boole's calculus of logic, preferring an
elaborate but clumsy symbolism of his own, whose intricacy
prevented his work receiving the recognition it deserved ; his
books remained almost unknown until rediscovered by Russell
after the latter’s Principles of Mathematics had been written,

While Frege had given a philosophic analysis of the concept
of number, the Ttalian mathematician Peano and his sch@l
(Formudaive de Mathématigues, 1895-1905), in the course.of
extensive researches in symbolic logic, had showr;mfjh:_i’cx all
prepositions concerning the natural number;s,jzhwﬁ’;ich are

required in mathematics can be deduced frpfm\d set of five
axioms. : N

X 3}

The results of Dedekind, Frege, and\P,eaﬁo had covered in
conjunction the whole field of elemen&r“y pure mathematics,*
and by reducing the real nunjlbefs to integers, integers to
entities occurring in logic, l;q:d;}:.upplied all the materials for
the logistic thesis. Theré:\x;és still needed a synthesis to

wEGROFHTRRHE -Pé'ﬁﬂ‘@&%ﬁd remedy the imperfections of these
early proofs. Thi{ was begun by Bertrand Russell in
Principles of M{:Z}kmatios, 1903, and continued in Principia
Mathematica " }ﬁfst cdition, 1910} written in collabora-
tion with, i;;ilfred North Whitehead. ‘These two bocks are
at thef :?.f)éx of the second period in the logistic movement ,
the3§~profess to prove, rigorously and with the utmost detail,
¢ identity of mathematics and logic.

The first is a philosophical and polemical discussion of the
logistic theories ; the second, written except for a minimam
of incidental explanation entirely in mathematical symbols,
a proof of the theories,

Since Principia Mathematica little advance has been
made by the logistic school and time has shown serious
defects in that work, so that the third period has been one

! Excluding Cantor's theory of transfinite numbers at that time
still undiscovered.
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of successive attempts to consolidate a position which at
one time Whitehead and Russell appeared to have reached
triumphantly.

Among the most notable of these attempts are H. Weyl's
Das Kontinuum, 1918 ; L. Chwistek's Theory of Consiructive
Types, 1923-5 ; and F. P. Ramsey’s Foundations of Mathe-
matics, 1927, All these defend a logistic position. In addition
there remains the remarkable Tractatus Logico—Philosophicus,
1922, of L. Wittgenstein, a former pupil of Russell, wh()%e‘j' )
conclusions, in many respects unfavourable to Principur”
Mathematica, should be regarded as the self-critical culmi;iat.i“(m
of the logistic movement. \

% 3
\

Tasks of a Philosophy of Mathenia\ﬁés
NS

o W
The finite and infinite problems of a philodgphy of mathematics are
the inwvestigations of the notions ddnteger ' and ! continunm
respectively. The subsequent analysis tends to replace these
unclear notions by more presiSes ones with the same formal

£

properties. The plan of 5“‘533'a:Pmysiinwmiﬁibrary.org.in

A philosophy of mqtli@natics has two principal objects
intimately connectéd \with arithmetic and the theory of
functions respectively :—

(1) To elugidafe and analyze the notion of ‘integer® or
“ natural nfpber ’,

(2) @é}ﬁcidate the nature of the matheinatical continuum.
Thg:sé’;}re formidable tasks ; ignorance of the correct answers

...lz’é;é’ﬁrovided paradoxes which date back to Zeno.
) For convenience of reference let these problems be called
the finite and the infinite problems of mathematical
philosophy respectively. They are distinct, although the
solution of the second may presuppose knowledge of the
solution of the first.

In spite of the contradictions which the second of these
concepts appears to contain (p. 89), the notions of ‘ integer’
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and ‘ continuum " have been used with constant success and
with such mutual agreement that the validity of proofs
involving them can, with a few notable exceptions, be decided
by the unanimous vote of those with sufficient mathematical
training to understand them.?

It would therefore appear that the terms * continuum ' a;nd
* integer * have meaning for the mathematician and the sanle
meaning for all of them,® and the natural procedupe for
solving both the finite and the infinite problems ‘é{fﬁmld“ seermn
to be to examine as closely as possible, and’sl\ibg’s’cquently to
analyze, the meanings of these terms. @c}l an approach
would be bound to emphasize the ideasswhich mathematicians
associate with the symbols they use, .@ther than the apparent
interconnection of these s;wnbp{s. éhbwn by marks on paper.
And the resulting analysis would need to be such as the
mathematician himself could accept as clarifications of his
notions. Similar remazkst are applicable to the philosophic
z‘iﬂ’é.ljfﬁ?"éf“ﬂ{ﬁl'%y%‘{%ﬁ? of interconnected motions. Such a
programme has ’i’x{t’affect been adopted by the so-called logico-
analytic scl}c{ﬂ‘.’ of philosophers® who have, however,

* The principal exceptions are proofs invelving transfinite numbers
to which_more detailed reference will be made later.

* Thiglgan scarcely be a truism; for the contrary view—viz,, that
matheinaticians are discussing nothing and that their terms have no

mealiing—has been seriously discussed. Thus F. P. Ramsey in a
gﬁer' read to the British Association {1926) said : “ Mathematics

#

oper is thus regarded [ie. by the formalists] as a sort of game
layed with meaningless marks on paper rather like noughts and

W% crosses; but besides this there will be another subject called meta-

£\
e \ W

\ W
) 2

Q

mathematics, which is not meaningless, but consists of real assertions
about mathematics, telling us that this or that formula can or cannot
be obtained from the axioms by the rules of deduction " : {vide F. P
Ramsey, Foundations of Mathematics, p. 68). This is an inadequate
account of the formalist philosophy of mathematics and it is extremely
doubtful whether a theoty of the meaninglessness of mathematics has
ever had supporters in this crude form. Such a theory would find
it hard to account for the agreement between mathematicians.
T{ mathematics is merely a game played with symbols there is
no reason except convention why the rules should not he broken;
chess played backwards is still a game that can be played consistently,
but a fopsy-turvy mathematics would be false,

3 These include G. E. Moore (Philosophical Essays and Principia
Ethica), Russell {in some only of his writings, especially Our Knowledge
of the External World and The Analysis of Malter), 1. S. Stebbing
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contributed but little to the analysis of mathematics, being
rather concerned with the analysis of facts of everyday
experience, '

We will restrict ourselves to two comments on the scope
of this method in the analysis of mathematical notions.

(1) In spite of the mentioned agreement between mathe-
maticians, it seems possible {o deduce contradictions from e
the mathematical notion of the continuum ; these contra- . N
dictions refer to the subject-matter of mathematics and*"’
can be deduced by formally correct mathematical reascmng
(p. 89). They are sufficiently striking to have 4 Qd ‘a
very celebrated living mathematician to speak ‘of a
vicious circle in present-day mathematics (Herman Weyl :
“Der circulus vitiosus in der heutigen'B%r’ﬁndung der
Analysis ”’ Jahresbericht der Deuischen Mat}w;imtiker Vereini-
gung, vol. xxviii, pp. 85-92, 1919). So it is not unfair to
ascribe much of the agreement between mathematicians to
the fact that they find no need {0 dse in mc;st proofs dubious
notions such as "all propertles of Ig\glwnumi)erswly "
occur nevertheless in ma\fhematwal textbooks and are an
integral part of mathei@at’ics.

It follows that uhless the result of philosophic investigation
is to reveal that'tﬁe contradictions in question are illusory,
produced by ’fa‘llamous reasoning, ambiguity of terms, or some
other tmual cause, clarification of the notions used by
matheﬁaatmmns will be inadequate unless supplemented by
‘remsmn it will be necessary actually to alter the meanings

\a%ta.ched by mathematicians to many terms and imperative
to find new meanings so clear and consistent that the contra-
dictions no longer occur. This is a process of analysis supple-
mented by synthesis. Such a procedure diverts emphasis

{(Iniroduction to Modern Logic), J. Wisdom (Interpreiation and Analysis,
ete.), and J. Nicod {The Foundations of Geometry), all of whom sometimes
and some of whom always emphasize that they are analyzing the
meanings of words,
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from the original notions to be analyzed, which in so far as
they are confused and inconsistent permit of no exact analysis,
Much discussion has been devoted during recent years to
proving that the contradictions are only apparent, that they
are trivial confusions of no interest to mathematics. Welcome
as such a conclusion would be to all except thosce philosophers
whose lives have been spent creating philosophic syste;ﬁs
based on the necessary existence of contradictions¢*these
attempts have met with little success and the bniaﬁcé of
critical opinion is against them. ~\*
Philosophic analysis of mathematical con’@%té therefore
tends to become a synthetic, constructiv¥ Proeess, providing

new notions which are more precise andytlearer than the old

notions they replace, and so chosen that all true statements
involving the concepts insid{a\tfie mathematical system
considered shall remain trug when the new are substituted.

{2} Such constructi\'rg '»éﬁé.l’ysis may however acquire 2

Wwﬁl?'ﬁwmﬂ@lmrjﬁﬁen instead of analyzing it replaces

the concepts by a&0mpletely new set having the same inter-
connections. | A_process of this kind is appropriate in the
analysis of ’rrizh‘hematics whose ‘ formal ' character we now
proceed Ao~€xamine.

Ou{:c\oﬁception of the nature of philosophic analysis as
aqtti:ally practised by the logistic school may be summarized

L the following manner : the system to be analyzed contains
3" a number of notions ! denoted by symbols 4, b, ¢, . . . Sa¥-

N\
\
3

\ 3

These are combined in various theorems, say abe, deab, etc.,
which may be denoted by 4, B,C, ... From 4, B, C, .+ -
taken together a contradiction can be deduced. Analysis
attempts toreplace 4, b,¢, . . . by new notions a’, &', ¢, - - -
say, so that as many of the corresponding theorems a'd'¢’,
de'a'y’, .. .ie. A', B, C', ... may still be true, and

1 * Notions * is chosen as a nentral word and is not intended 1o
prejudge the character of the entities which occur in the system.
Thus 2, b, ¢, . . . may include proper names, relations, adjectives, etc.
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yet such that no contradiction can be deduced from
A, B, C', .. . taken together! And &', ¥, ¢, . .. maybe
either clarifications of a, &, ¢, . . . {(genuine philosophic
analysis) or merely any concepts of which the statements
above are true (formal analysis).

! This is, of course, a very simplified account of the nature of a

system omitting for example the distinction between the formal and
non-formal elements of such a system.
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Supplementary Note on Logical Analysis '

A discussion of the general features of all systems of symbols {lanpnages
introduces a definition of logical analysis in terms of the ¢ xplained
notions, multiplicity, significance, and strizcture.  Difficulties
arising in the logical analysis of langnage and here discussed thm\\\
hght upen analogous difficulties in the analysis of mathematics,

Logical analysis is a method for elucidating the sh\ucture
of systems of symbols or ‘ languages ', i.e. any seQQf symbols -
used in recurrent combinations for commum«:\atlon between
persons. A language in this generalized sense d.le} 5 contamns
rules of syntax though not necessarily? éxphmtly formulated.
It will be convenient to confine the dxscussmn to systerns of
symbols which constitute a langu‘age such as English, thongh
much of what will be said_is- ‘abplicable to such systemns as
the languages of pure maihema.tlcs and physics.

W ﬁfﬂb‘@ﬂhﬂﬁm‘ﬁr@ﬁgdﬁrﬁphcates the account of such systems,

but this is unavmda‘b\le, since languages are made for use and
not for analysigh, ™

Logical analysis of a language is best understoed in terms
of the 3tracture of the language. Though all readers of this
accouht will be familiar with what is meant by structure it is
,{Q’& easy fo give a short and, at the same time, accurate

R ’.’\account of this notion. It may be described somewhat

\\ " inadequately as the relations between the forms of complex
\ symbols.

In more detail, what is meant by saying that language has

«’jl structure is essentially that certain elements {(which are, as

It were, the material out of which the language is built)

recur as members in various complexes of elements while

* Extracted, w

ith. & few alterati
“ Philosophical A; ations, from the author's paper on
1932-3, p, 237. valysis "', Proceedings of the Avistotclian Soctefy,

24
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remaining recognizably the same in these different contexts,
so that complexes can be transformed into one another by
the reciprocal exchange of elements.

Complexes of symbols {phrases, sentences) can function as
elements, and by substitution in other complexes lead to the
construction of symbols of ever-increasing complication. To
some extent this complexity is visibly manifested in the visibly-

increasing number, variety, and arrangement of signs used,* N\
but to a great extent and for reasons of practical conveniem'}a “

this complexity is latent and is therefore revealed bmt”l{e
possible transformations of a given complex instead*'gf by its
visible complexity. < x\

It is the purpose of logical analysis to n{ake these com-
plexities explicit by the discovery of Iaw‘s‘\‘fowr transforming
svmbols and by the manufacture of n@vléymbols of sufficient
visible complexity, It may be a.dg{éd'that this would serve
as a fair account of the mather{laficﬁi method in general, and
logical analysis is, in effect, a;l%’r'zi.hc‘%“(’)‘ff %I}]glégﬂ rglt_hgélgg_tiiﬁal
investigation differing erIQ what is conventionally known as
pure mathematics chie{i‘};\in having a less abstract and more
specialized subject-ih}tfer and from ‘applied ’ mathematics
only in dealing With linguistic ‘elements in place of material
bodics, ) N\

Logic perJ\er is concerned principally with systems composed
of wordé?ii'ld I must now particularize the foregoing account
to. a];;’py to such languages. By lamguage in the following

oﬁér\slgraphs I shall usnally mean the English language.

’ The elements of language which combine to form complexes

include words, intonation, sentence-order, etc.

By elements are meant any features such as sounds, marks,
shapes, etc., which can affect the senses of persons using a
language for communication. In describing such elements
it is necessary to distinguish those which are significant from
those which are not. Significant elements in a sentence are
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those features whose variation alters the meaning of the
. sentence; thus in the printed sentence the word-order is
 significant, while the size of the letters composing the words
is a merely accidental feature. It is not possible to make a
very rigid distinction between the two kinds of elements :
‘the spelling'of words, though, in fact, a significant feature of
 printed sentences, is of merely conventional and trivial Q
significance, for the spelling of all or any werds in the Engli'sh'\
language might be simultaneously changed with no ess?njftia“k’
alteration in meaning.! A7
The definition of significance is in terms of fi{ﬁ&gnce of
meaning, and this preliminary account of structure and
significance must not be interpreted as an attempted definition
of structure in terms of "meaning ', iorf?lfé latter term is
again_ subject fo the peculiar -ambigm:ty‘?affecting all terms
which have direct or indirect referente to mental processes.

Though meaning is notoriouglyt}iifﬁcult to define, no final
definition is needed for log)‘:éa'

] logical analysis, for whose purposes
.twfg'w LAl {iil].’ SOUELRS . . .

11> suflicient that' some distinctions of meaning should be
Tecognizable, for logi.ca}saﬁalysis isnot a dissection of complexes
mto completely definite  elements. Progressively more
dls?mctlons of neaning are perceived in the course of analysis,
?vhlch is A process of successive approximations revealing
mcreasmghcomplexity of structure,

: cant elements ; it is-impossible to enumerate in advance

Y ificant features of a language, but the recognition. of
¢\ Some such features is a sufficient starting point for analvsis.

O The differences in meaning with which I shall be concerned
flerences in literal meaning as distinct-

in this account are dj
from metaphorical, @sthetic, or poetic meaning, for though the
Y Any significant featurs

The same is frue of

ight be altered without ini .
cf. the Morse code £ mig ered without injury to sense :
theoretical min; I’n‘;’;’:ﬁ;’fﬁlﬂﬁ only four elements (three are the

destr p guage), but such transformations do not
tionsogf tﬁfaf hthlﬁigtggge(ﬁa;d gug.rge, which 15 what all the transforma-
have in commop’ ho transformation of any other language
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artist employs symibols they are insufficiently precise to lend
themselves to logical analysis.

A list of the chief features of language significant with
respect to literal meaning would inclade :—

{1} the occurrence of specific words or word-groups,

(2} word-order,

(3} emphasis,

(4) factual context,
each of which requires some explanation. N

{t) Tt is a distinctive characteristic of all languages, made
to be spoken that groups of words combine into um’&s uch
as descriptive phrases, sentences, etc., whichn\d \turn can
function like simple symbols and replace words in definite
contexts. In most languages (in the widegt dénse) such groups
are continually denoted by a single symBql concealing an under-
Iying complexity of structure. Such Sub5t1tut10ns, inevitable
in the process of growth of any ].ng language, are one of
the circumstances which make 10%1ca1 nalgflsfl az;gogfs%afg
Limitations of the humaft larynx and the human ‘merory
demand the suppresskon\ of differences of structure which
logical analysis has t(}eveal That this is recognized to some
extent in ordlnarymsa.ge is illustrated by the fact that although
difference inf fghe marks or sounds used to express words is
sufficient48; and usually does, indicate that the words are
differgnt) “difference of words is based not on the difference
Of\fﬁé marks which express them, but upon difference of
“theaning ; the same mark, if used with different meanings
{e.g. wice, a carpenter’s tool, and pice, for which sinners
are punished), is said to express different words.  This
distinction must be rigidly preserved in the use of words and
symbols in describing logical analysis, with the consequence
that marks which would ordinarily be said to belong to the
same word mnst be counted as belonging to different symbols ;
thus the copula in This is greest is mot the same symbol as

287
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that in Gresn is a colour, and both differ from the s in 4 man
15 not @ woman.

{2) Word-order is a significant feature of language—for
Hitler hates Stalin does not mean the same as Stalin hates
Hiiler—and plays a part in determiining what combinations
of words are nonsense. The latter term is to be taken in its
strict meaning with none of the abusive connotations \vllich\<
render it so useful in philosophic discussion. Shorn of these,
it denotes simply any complex of symbols which if;:’;nof
constructed in accordance with the laws of combidation
(syntax) of the language in question. Examples ‘ilbnsénsical
combinations of symbols are such inadmissible groups as
succulent substantives, adjectives love analysts, the law of
diminishing returns is blue ; these grottps have no meaning
as groups, and that fact is anothe{b\h\;pect of the structure
of language, for if all possible cqipbinations of symbols were
permitted the language would, haVe a minimum or vanishing
;%ﬁ%@%?agﬁlﬁ?a %ﬁlglgg_lllgﬁéfh\is with lite?'al meaning, n}eta:-

poetic phrases such as yellow jealousy, mecessity is
the mother of fﬂvﬁﬂé;‘ﬂj}ﬂust also count as ‘ nonsense ', though
the latter tYPe‘df}kO.nsense differs from the former in being
capable of ‘pefgg paraphrased into matter-of-fact language.

() Thf.oilgh preoccupation with the printed rather than
the 59'2'1&1 word it is easily overlooked that intonation or
emphasis is a significant feature of sentences, Shifting of

S hasis from one word of a sentence to anot
~Lalters the sense ;

\J word alters what
the meaning,

her usually
merease of emphasis on one particular
may be called the sntensity of emphasis of

The intensity with which 2 word is emphasized in a sentence

con'espor{ds tq the degree of attention called to the use of
that particular symbol with all its
any other,

actuaily yg

. - implications rather than
o E‘mPhasxze aword is to state that only the word
ed will fit the situation ang hence to imply, with
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varying degrees of definiteness, certain facts about the situa-
tion. If I say “ Mrs. Jones did so and so ", with a certain
emphasis on the Mrs, part of my assertion is roughly
translatable as ““ It is Mrs. Jones, a married woman and no
spinster, that I am referring to”’. In such a case I am not
using Mrs. Jones as a (grammatical) proper name, but as a
description ; the two uses are quite distinct and the implica-

It does not seem possible to remove the ambignity oft’ehﬁ'
caused by doubt as to the degrees of absolute mtegs@"of
emphasis {of each word) and relative intensity of émiphasis
(of words in relation to one another) in a seutémce by a
convention that maximum intensity is in alltases to be
employed, ie. by a convention that aﬂg{:@écéivable implica-
tions of any form of words are to be aﬂ(j)}'éd. For this could
not remove the difficulty of relative‘.e‘;fiphasis, and there is no
maximum to the number of pos;sfbie implications of the use
of any symbol (except a Iogicai:f)roperwﬂhr@}lmlﬁus%mm.
The connotation of an attribute may include the existence of
antecedently causal events which may, in turn, imply the
previous existence \of " other events and so on—" being
married,”’ in ong\s’éﬁse at least, entails having signed a book
in the presencsi@f a'registrar, and ‘* being a registrar ”’ entails
having bﬁiti:aiithorized by the proper authorities, etc.,—and
such ap;.i&inite chain never 7s intended, Or, alternatively, at
Son}e\"siége, some ‘simple ' quality is attributed fo some
Qhﬁéét. In the latter case the common use of the same sign
by various persons carries implications. To say so-and-so
is red may (or may not) imply that the so-and-so has the
colour commonly denoted hy red, which in turn implies further
statements. And langunage cannot be used so as to be
deliberately charged with this kind of implication; for if
by ‘red’ I mean “what is commonly denoted by red”,
then by ‘commonly’ I must mean *“what is commonly

~N

N

tions of two sentences in which they occur are very different. { \
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denoted by commonly '’ so that either I can never express
what I mean or else I am using language parrot fashion.

(4) The factual context of a sentence, i.¢, the circumstances
in whichr it is uttered or printed, serves in practice as a
substitute for the direct symbolizing of structure and thus,
by suppressing the manifestation of structure, may lead toss
confusions. It is-not sufficiently appreciated that eye{y\
form of words may express several different propps}'t’itm’s :
according to context ; this effect is well illustrated b‘} con-
sidering the different meanings of This is 4 wf{i’ffﬂ\»m;‘”fdf’if’“
as-an answer to each of the following eights questions in
turn:— )

What is this white object % ¢

What colour is this ma{r;fsfpiece ?

What is this object 2\ .~

This is not a wh}te ih:cmtelpiece, isit?
ooy, 1o this a whiteor a black mantelpiece ?

aulievany ﬁteg\wﬁlte mantelpiece ?
Is tﬁisg}hite mantelpiece ?
“fhél% is there a white mantelpiece ?

It th‘?‘r\d?'der will take the trouble to repeat the sentence
.88 107 were an answer to each of these questions

s%t’fgs‘sively the differences in literal meaning should soon

) .z\b\ecome apparent,!
s"\ I‘f may be objected that emphasis and intonation are
V subjective elements of janguage, indicating the attitude of a
PeTson asserting a proposition (or making a judgment} with

respect to the order in which he wishes the terms to be

;:;s:;l;red, the relative importance he attaches to them, ctc.,
o at there is a definite Oxford Dictionary meaning of
Yy form of words even though the .Pers()n using those WUrdS

L The . : .
some coul?iu?gb;fcgé :ﬁﬁgs 15, of course, not confined to eight, and
forms of words. gucusly expressed by the use of alternative
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N fte., and (B) the symbols cathedral, Ludgaté Hill, etc., in their
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is unaware of that full meaning. If that is a valid objection
the task of logical analysis is considerably simplified, but
it appears to be more correct to regard the significant sentence
as being, as it were, two-dimensional, having both extent
and intensity. The terms of which it is composed determine
its extent or area of reference, the relative and absolute

emphasis attached to its terms regulates the fashion in which ,

2.7

the truth of the statement is tested. AN

This can alsc be expressed in another way ; the mgmﬁca*nt
sentence, i.e, a sentence actually in use to convey nteamng,
contains two heterogeneous elements in its e:fgp)?xessmn it
names the members of a configuration of objects’and indicates
one of various possible correspondences bet‘v@en the sentence
and the configuration. Thus the statement may categorically
assert or deny, question, doubt, assért With varying degrees
of probability, the existence of the ‘configuration. This view
may, perhaps, be made clearex hy an example : I will assume

that the reader knows that there v avcdtheddabremlargente |

Hill. Tt has often been!@i‘d that in addition to the cathedral,
and the hill (or Befter, perhaps, the cathedral-on-the-hill)
there is also a fact wiz. that there is a cathedral on Ludgate Hill,
and that it ig .t‘he correspondence of this fact with the proposi-

tion, * ’I‘hex‘e is a cathedral on Ludgate Hili’* which makes .

the last\{utfrue statement, The alternative view here suggested
is to c}mszder the correspondence to be between two configura-
tions of objects : (a) St. Paul’s Cathedral with Ludgate Hill,

arrangement in the proposition considered; and to regard
the characteristic falling intonation with which the s is pro-
nounced or understood to be pronounced as showing the kind
of correspondence which is asserted. The correspondence is
simple in its expression (the intonation which expresses it
being comprehended as a simple symbolic feature like red,
and not as a complex like gold-fish), but can be unfolded in a



32 LOGISTIC

characteristic fashion by stating explicitly as many of the
implications as there is time for on any given occasion.!

It is, however, possible to sketch the rudiments of logical
analysis without taking into account the difficult guestions
associated with emphasis ; this is in accordance with the
general view of the nature of logical analysis explained above. {8
For simplicity it is as well to break up the definition of logi:ca.l
analysis as follows :— o\

A is of the same dype as B means : in every context where
A can occur without making nonsense B can als(i;‘zib o, and
vice versa. Here A, B are, of course, symbdi§, }na it is easy
to see that being of the same type as is a trg.gsiti\;e symmetrical
relation which separates all symbols o 2 set of mutually
exclusive classes each containing al{¥be symbols of the same
type as any member of the clasgy

A is of the same level as Bziwﬁere A, B are propositional
Tunctions, that is symbql's::,éiipres,sing qualities or relations,?

'mmsibﬁﬂ"cﬁé‘%ifg‘nﬂi@& to 4 are of the same type as all the
arguments to B. _‘P\rq\positional functions and their arguments
are symbols, X\

I cannot, define propositional sentence, and a description
must suffife: Propositional sentences are a subclass of
sentepce\s: consisting of all those which express statements
arh\{afe, therefore, neither questions, requests, or commands,

"(f 'a}m'l excluding all sentences which contain nonsensical combina-
L tions of symbols; tautologies, equations, identities, and
N/ contradictions may all be propositional sentences. Sentence

will be used as an abbreviation for propositional sentence
from this point onwards,

! The process of unfolding will
log‘mal analysis of the sentence
. sentgoposgg}al functions are better defined as parts of propositional
e CES O ‘ﬁmed by omitting nouns or noun clanses ; an argument
withm?tmzrus\ll n?;?w}s)imlllcum 15 any word whose addition (with or
Do si ents changes the propositional function il:f‘m a pro-

. of course, not constitute part of the
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A has the same muliiplicity as B where A, B are sentences,
means : the symbols composing A can be puf into one to
one corrclation with the symbols composing B in such a
manner that corresponding symbols are of the same type.

In applying the above definitions to investigate the maltipli-
cities of specific symbels complications are produced by the
systematic ambiguity of words which makes it difficult to
recognize whether two symbols are of the same type ; substitu-

tion of one for the other may seem to make sense because all <\~
the other symbols in the context are unconsciously replaged Y
by new symbols of different type expressed by the same gigns.”

Often, indeed, it is by no means easy to rewgnize‘w\hether
two marks represent the same or different symbols,\a circum-
stance responsible for many of the fallaciesiﬁ\ philosophic
reasoning. A\ )

It is thercfore worth indicating how relatlonq of Ldentlty
and difference, whether of type, levely or multiplicity, can be
recognized. Relations of multig]&it}};,mdm@gﬂ%aqﬁggg%l}]
beiween sentences, holding independently of the truth or false-
hood of the assertions exgre’%e\d by the sentences. They, and
from them the correspohﬁmg relations of level and type, can
be made more obwous by using the sentences A and B, say,
under comparison’ ay premisses in deductions. For if 4 and B
have different. rhultiphaneq but appear to have the same,
then sowne '&sductlon which will be correct when 4 is used as
premlss‘wx furnish a fallacious deduction when the deduction
is txansformed in such a manner that B takes the place of 4
aﬁi all else is unchanged. That is to say that since all logical
deduction is in virtue of multiplicity of sentences, difference
of multiplicity is revealed by the impossibility of reciprocal
substitution in deductions.

Further, language usually provides alternative forms of
expression for the same meaning ; if A can be translated from

one grammatical form into another, and B has the same
D

~N
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multiplicity, it must be possible to translate B into a
corresponding sentence.
" So differences of multiplicity can be tested :—
(1} By performing the transformations menticned in the
definition of multiplic'ity. _
{2) By translating A into equivalent sentences and per-.

forming the same transformations on B. X N\
(3) By constructing deductions with 4 as a premis§ afid
substituting B. \J

Finally then, Logical Analysis of symbols consfs{ﬁﬁf showing
thety logical form, that is their type, level, or mpllsplicity, more
explicitly. This can be done in several wafs’::—

(1) One symbol can be replaced by seyeral, e.g. if a symbol
4 is found to have the same typg\es;& group of two symbols
BB, it must be possible to replace A by a group of two
symibols 4,4, where 4, hag,tfhé same type as B, and 4,
the same as By; 4,4, mBans exactly the same as A, but

“ﬁbﬁrmhaﬁsﬁfglmg.mﬁfusion.

But (2} it is not passible to show explicitly o/l the multiplicity
of a sentence in‘this fashion for the multiplicity is partly
constituted.by)%]e fact that the sentence is composed of
symbols .{){ ‘Certain definite kinds and no others, Thus
‘multiélidty’ as here defined is not exhausted by the
"“?”fi}” of symbols which can be substituted and Iogical

JAmalysis will partly consist of statements 4 4s of the same
Lo\'ype as B where B is a symbol whose type is clearly under-
‘ «  stood and 4 is not. Or again, the same result can sometimes

be achieved by statements of the kind: A4 s g colour or A 1s
@ sense-datum which indicate the type of 4 by describing the
kind of context in which it can be sensically (or non-
nonsensically) used, .

Good examples of logical analysis are Russell’s theory of

de?_c:nption?, M_oore’s analysis of existential propositions,
Wittgenstein's critique of identity.
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Tt is now possible to define logically misleading symbol 1 If
in some usage a symbol 4 occurs in a sentence which can be
translated into another showing its multiplicity more
explicitly, and such that 4 no longer appears in the new
sentence, A is said to be a logically misleading expression in
that usage.

~ Examples are :—

(1) #eal in lions are veal.

(2) fact in It 4s a fact that I work in the Bﬂtﬁh

Museum.

For to write lions ave real is to suggest that the senteh}e has
the same multiplicity as lions are fierce, and thig is'not the
case. The two ares are different symbols ;\{eal and fierce
are of different types, Lions are real is better written Some-
thing is characterized by being a lLion; and real is therefore
2 logically misleading expression in) tliiit usage.

Again, £ is a fact that I work in éke British Musenm can be

more simply expressed by I3 WGrk trbhed Bralino e d4 3668

and, therefore, fasi in th{\t usage is a logically misleading
expressiori,
In elaborating 10g1é1 analysis still further it would be

necessary to distinguish between various kinds of logically

misleading sy B}Jis For the sense in which every condensed
symbol %}h ‘as presideni capable of being replaced by an
expl1c1t\
not, "-he' same as that in which fact is logically misleading-in
Su}né usages. The basis of the distinction is this: A logically
\‘nisleading expression of the first kind can be replaced by a
group of other symbols without alteration to the remainder
of the sentence in which it occurs {e.g. uncle = brother of a
parent), whereas a transformation of a logically misleading
expression of the second kind involves alteration of other parts
of the sentence as well (e.g. the transformation of real above).
Logical construction is sometimes used by the logico-analyst

scription is a logically misleading expression is -
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in such a fashion as to be identical with a subspecics of the
second kind of logically misleading symbol.!

The materials for the actual practice of logical analysis are
partly available in the propositional calculus and caleulus
of relations elaborated by Frege, Schréder, Peirce Russell,
and others, but the point of view of most of them differs,
fundamentally from my own, in neglecting such symboliq\
features as.emphasis and in adopting an cxtensional va.r:f
symbolism, mistakenly thought to be necessary, ‘\ﬁ the

P

analysis of mathematics. \ 3

! The notions of multiplicity and type which havé\pécn used above
were suggested by remarks made by Dr. Wittgenstein in his Tvactaius,
and also in lectures at Cambridge, Without making him responsible
for my cénception of analysis I think it will bgfound that my definition
of multiplicity and logical analysis agrees mf}'ha.ny respects with what
he has said concerning analysis,

,\\ }

\ N\
™
&N
AN
www.dbraulibrary org.im
N\
KA
g\.'\\.}
'. N -,
AN/
m(..t
&/



The Formal Character of Pure Mathematics

This section describes the ideal arrangement of a branch of pure
mathematics as a system of deductions from initial axioms.

It is a consequence of the generality of purc mathematics that thc,
subject-matter of such a system is indehnite : the axioms treat gi .

any set of objects whose names will fit into the axioms. N\

N/

The theorems which constitufe any branch of pu;'g\\m’atthe-
matics can be arranged in the following mannersss
First come a number of axioms containing\those mathe-

matical objects, such as integers, lines anﬁ}points, groups, -

and their properties or relations, with\\ifhich that branch of
pure mathematics specifically deql%;~ These axioms will
usually take the form of genera[’?aﬁd existential statements
concerning the properties and\félations of the entities; the
relations are named but the eﬁtities arErafdtPraut ptydefmite
descriptions.! Relations:\t\hemselves can of course be the
‘entities ' of a;lothér%\y'étem of axioms, and the theorems of
one department fudy be the axioms of another. Axioms are
so called begagisé they are accepted without proof in the
context gi;‘&’tc? branch of mathematics of which they are the

axiomg\Mthey are the premisses from which all theorems,

as ‘di§\ﬁnct from axioms, are deduced. In what follows

"~Etﬁébr ems ’ will be understood to exclude axioms,

\/ The objects referred to by indefinite descriptions in the
axioms, together with their properties and relations, may
be called the subject-matter of the particular system of
inter-connected theorems in whose axioms they occur ; their
mutual relationships are specified by the axioms and thereby

determine the character of all the theorems which follow.

! More accurately, using terminology defined later, symbols dencting
“entities * appear Yés agpa.rent varables, symbols depoting their
Properties or relations as undetermined constants.

37
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Thus geometry will be characterized by axioms dealing with
lines, points, etc., the theory of groups by axioms in which
groups are mentioned. Arithmetic is in a peculiar position
since definite integers occur in all systems of axioms, but even
that subject can be arranged as above to begin with axioms\
whose subject-matter consists of integers and relatioms,
between integers. Oy

In each branch of mathematics considerable chéﬁ(}e can
be exercised in selecting axioms, for many alt ‘nafive sets
can be obtained by suitable arrangement of t{e}undamcntal
objects, but this fact is of minor importance/for the present
discussion, )

Theorems are obtained by logigfzib deduction from the
axioms, which implies that no ohjects must be mentioned
except entities cornposing tha’sﬁﬁject-matter nor any state-
ments concerning them exCept the axioms. For the purposes
of mathematics all thaf needs to be known of these cbjects

"“'“i?’ Sred O s and this is true not only for the

subject-matter ,6f) 2 given branch of mathematics, but
of all ob;egtg. wiiich occur in mathematics since, by combina-
tion, 2, sef, of axioms could be constructed for the whale of
mathetnatics.
It TYollows that many different sets of objects and relations
“serve as the subject-matter of any given mathematical

"\~f" theory. For example, the ‘ points ', ‘ lines’, ‘ circles ’, étc.,

which are the subject-matter of the axioms of Euclidean
geometry are primarily understood to be the geometrical
figures usually denoted by these names : yet the axioms
remain true if the following transformations are made :

points * are taken to mean ordered 1 triplets of real numbers,
“lines’ are translated into linear equations in three variables,
and statements such as  the point P lies on the line I into
the statement that the corresponding triplet of real numbers

! So that (1, 5, 6) say is not the same * point * as (5, 1, 6).
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satisfies the corresponding linear equation, ete.l Since axioms
of pure gecmetry can be translated in this fashion all thecrems
deduced from them undergo the corresponding transforma-
tion ; all statements of pure geometry may be interpreted
either as concerned with points, lines, circles, etc., m the
common significance of these terms, or with certain sets of

numbers, equations, etc. The theorems of pure mathematics A

~

N

are true of any objects and relations which satisfy the axioms 23 N,

and transformations of meaning of the type described can be
performed in any branch of mathematics which x'c\‘:m.“'be
arranged in the form of axioms and theorems, x\
Hence, although even mathematicians themselwes associate
such terms as ‘line’ and  point * with un%&s of definite
geometrical figures, the names functionds terms of variable
meaning whose use facilitates the coqsﬁuf;tion of very general
theories of the relations between miahy different systems of
objects and exhibits the commjfgn: structure of these various
systems elegantly and succin’ét‘lﬁy. www.dbraulibrary.org.in
The formal character ’of’\'[:}ure mathematics described in the
immediately preccdirigiqﬁ'fﬁgraphs indicates why an ‘ analysis’
which substitutes féw notions for the notiens to be analysed
s a legitimate protess. Any analyses of mathematical terms
which left tHg'mathematical theorems superficially unchanged
must no@e} summarily rejected ot the ground that they are
reP“giIi;‘ﬁlt to common sense or that they are not analyses of
,I.I}ia‘.ﬁhéinaticians’ notions.
N\ This apology for formal analysis requires two important
Teservations in the case of pure mathematics. (1) The natural
numbers as we have just scen are in the peculiar position of

! The fact that this transformation is possible is the basis of Cartesian
Or co-crdinate geometry which is essentially the application of algebraic
metheds to geometry by transformations of the type sketched in the
teit. _ For further details cf. D, Hilbert, Grundlagen der Geometrie.
¢ Every system of things will have some relations and will therefore
satisfy some conceivable system of axioms, so every system of things

rl_:ilse Ve 4 geometry ; mathematics studies the more * interesting * of
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occurring as constants in all axiom systems and therefore
marks denoting integers must be understood in a sense in
which lines, points, etc. need not be understood. (2) No
compiete axiom system can be set up for ‘real numbers’,
That is to say in the two cases where the fundamental problems
of phiiosophical analysis of mathematics arise it wﬂl{be
found that no ‘ formal’ analysis is adequate. A jusiiiﬁsetlon
of this thesis however requires further explanatien of the
nature of axiom systems and will be reservgd}xfﬁf a later.
section, _ ,'\\ ’

The next topic for discussion is the so«f%}ﬂé::l propogitional
calculus, the elementary portion of t@\;ﬂgebra of logic.
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The Propositional Calealus

The manipulation of propositions, definitions of implcation, equivalence,
lautology, and a typical proof. :

S
\J

We turn now to the details of the logistic proof of\the
identity of rnathematiés and logic; until furthei:} otice
the system considered will be that of Principip M Q\fhsmtz'ca,
first cdition, but we have substantially revi@ii the account
of the matter to be found in that book and fiade considerable
use of ﬁnprovements. that have bq&ﬁ‘;})erfectéd since its
appearance. We begin by a shg};{f dccount of the post-
Aristotelian view of the nature «f logic and of the manner
: . . . Oswww.dbraulibrary.org.in
In which an algebra of logic J’s‘constmcteé.

Logic deals with such.,‘{&lafions between propositions as
depend only on the log\i(':;i form of the propositions and not
on their content. In'arder to explain what is meant by logical
form it is best..i;;}‘ begin with an illustration; the two
PrOPOSf‘EiOTIS'Hz:%\s'?ey ts biue and fthe grass is green have the
same Iogig;al{ c;nn, for if the sky is substituted for the grass
and blye, or green the one proposition transforms inte the
othe Tt is difficult to give an exact description of logical
ﬁ’r@{?!:}: ; the following is a good approximation: the logical

I of a proposition is that which it has in common with
all propositions whose constituents can be put into one-one
correspondence with its own constituents. But the notion
of constituent is not sufficiently precise for this definition to
be satisfactory, What is desired is that words like red, house,
Jones, when occurring in a proposition, should denote
constituents of the proposition, and that words like s, wof,

41
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or, should not.! The difficulty of defining logical form will
not affect the exposition of the logistic calculus of proposi-
tions where it is never necessary to mention parts of proposi-
tions; but it is important later in the calculus of propositional
functions.
~ Formal logic studies the rules which state the conditions
under which the truth of a proposition, # say, can be dcducécg
from the truth of a-set of propositions, £, o, . . . Py €2,
by virtue of their logical form alone. The classical syllogistic
tules will illustrate this; for they state the circu s%a:;nces in
which a proposition can be deduced from tvv\d;c}t ers. We
call relations which hold between propositidns by reason of
their logical form internal relations. Amon the most obvious
kinds of internal relations between {propositions are those
between compound propositions .51.101; as this paper is white
and this line has several wor@s,’gﬁ' simpler propositions like
this paper. is white WhiCh,@'f'é:‘i)art of them. If the logical
sviormabofuptepositioesimdg known, deductions can be made
from them without réference to the particular state of affairs
they assert. Thus)if this. paper is white and this line has
several word'sjé true, the truth of this line has several words
can be dedueed in consequence of the relation between the
forms .C‘f:,t}lé two propositions, the particular assertions they
makebemg irrelevant ; and in general if a proposition p and ¢,
,,w‘h Te  and ¢ are any propositions whatsoever, is true the
N truth of $ {and also of g) can be deduced.
\' Nt The.a?ppropriate symbolism for all statements of how
propositions can be deduced from other propositions by
* This descripti i it . . ]
o T e el gt o g ek

_Propositions have the subject-predicate form would

%}irttth:;si]'i dgﬁn}tlon in the text supplies tco mpany logical forms 3

naedsg morl f{m ractatus Logico-P hilosephicus), on the other hand,

of * multipliciey » jrps, the definition supplies. For the definition

makes 1uglf c altxiulgg}filé?fy ti‘?l‘“gh not actually stated in the Traciatus
arrowe i i

above. Two propositions of o, rm Illl?gon than logical form defined

logical form, but the converse js not a.lwagr};lc t;‘?;.mUSt bave the same
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reason of their logical form, together with the appropriate
rules for manipulating such statements in order to obtain
others, is called the propositional calculus. The symbolism
is such that propositions are always represented either by
stmple variable symbols such as p, ¢, 7, or by complex symbols
which consist of the simple symbols connected by a small .
number of words such as not, or, and, which indicate logical N\
form. All considerations of internal relations between\,i;':
Ppropositions which involve reference to their constituenfs)®
are reserved for the calculus of propositional function .":"«'

For convenience of manipulation not-p or p i "ﬁ?tse is
written ~ 5 ; por gis replaced by pv g, pand ¢ by’é’. g. The
word or is ambiguous ; the meaning chosen js\sach that the
assertion of p v ¢ does not exclude the pqg’éib' ity that both
pand gare true. It is also necessary to{s}nﬂ}oh’ze the relation
which holds between two propositionsp and ¢ when the second
can be deduced from the first ; thus is expressed by saying p
. . : ooy w dbravlibrary orgin .
implies ¢ or, in symbols, 3 N :‘If’ however the word implies
is nsed with this meaning j#3s found very difficult to develop
a calculus ; therefore alzpodified definition is adopted and
2D ¢ is understood to mean “either p is false or g is
true ™ which is equivalent to it is false that p is true
and ¢ false ”’ \

The re atr@n {mplies is therefore mot an internal onme, as
is Shov\«;'\"h the fact that it holds between any false proposi-
tio‘}.@a’nd any true proposition g, irrespective of their logical
forme*  This fact is without detriment to the use of the
élcu]us since we need in actual deduction to deduce proposi-
tions only from propositions already known to be true; and
it follows at once from the definition of implies that, if pD ¢
and p are both true, then ¢ must necessarily be true. Although
#D ¢ will be asserted in some cases where there is no internal

_* The inteérnal relation which corresponds to the first definition of
tmplies is usually referred to as the entailing relation. This terminology
18 due to G. E, Moore { Philosophical Studies).
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relation between p and ¢, all cases where there is the corre-
sponding internal relation can consistently be represented by
D¢ ; and the use of this symbol will lead to no mistakes
as to the truth of propositions.

Some further definitions are required : Two propositions
which imply one another are said to be equivalent and the
statement $ Is equivalent to g symbolized by ¢ = ¢q; the use("
of this sign to denote equivalence must not be confused with
the use of ¢ . .Df. which means ‘ equals by deﬁni’tlon

and is used for deﬁmng the meaning of new symbolg\in terms
of those aiready known. TFor example the verbﬁ\dehmtlon

which has just been given of equivalence in term\)f implication
can be expressed as follows :— )

=9 ={t29.( 93?)} Df
Here, as in general, the defi mendum‘ls placed to the left and
the definfens to the right of, the sign of equality, while the
occurrence of the s mbol. ’Df signifies that the exprossion

" rauli I'al OT,
Prée cﬂng s a eﬁmtlon and not a theorem of the

propositional calcu s..

The precedin Qefinition mdlca.tes the necessity for using

_ brackets m‘order 1o render unambiguous the meaning of

complicaff\ﬂ ‘€xpressions. Principia Mathematica adopts an
ingeniz{hs method, replacing the conventional pairs of enclosing
gj@ used for bracketing mathematical expressions by

ps of dots , : & : etc. Fach complete group of dots
,*functions as a bracketing mark with the convention that any
group of bracket dots dominates a group containing fewer

dots. Thus the expression p.vig. vir:pvg: would be
expressed in the older notation by
Pyigvir.(pv ).
The ase of dots for brackets cannot be confused with the

?se of dots to symbolize the logical constaut and (supra),
or and always occurs between two complexes of signs which
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denote propositions, while bracket dofs cannot do so. If
suitable conventions are formulated as to the relative strength
with which the signs . v 2 = and ~ bind propositions the
number of bracket dots required to symbolize a given
expression can be considerably reduced; just as in the
algebra of integers (¢ X ) — (¢ X 4) can without risk of
ambiguity be written eb — ¢d, the expression pg v #s in the -
algebra of propositions is understood o mean

(-g)vir.s). \V

Such simplification has only partially been perfbhned in
Principia Mathematica. o

\\

The materials of the propositional calc{ﬂus havmg now
been sufficiently enumerated it remains to \)(plam how logicai
calculations are performed The poipose of the calculus is
to determine which formule g@m‘posed of symbols for
variable propositions and 10&&3»,\’;&%5 b{%m gefrrect
for all determinations of the~ wariables ; an example of such
aformulaisp.pDg: :\ zf P 18 trug, and p Tmpiies g, q s
true), Such formule wﬁ} be called laniologies.

In accordancg m\}h the usual procedure of pure mathe-
matics the calcu}.“us commences with a number of axioms,
formula whzgh ‘must be seen withouat proof to be tautologies.
These a;ijc:ms of the propositional calculus were called

‘ primitive propositions * in Principia Mathematica. Further
iaﬂtaogles the theorems of this calculus, are derived by the

. use of specified rules of manipulation described below.

" The advantages to be derived from the use of a propositional
calculus of this type are those inherent in the mathematical
method. By indicating at all crucial points of a complicated
demonstration the axioms, previously proved theorems, or
manipulative principles, which are used, it becomes possible
to test each step of a proof and to be certain that no fallacious
Teasoning has been introduced. This aim is of particular
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importance in the logistic thesis which requires scrupulous
care to ensure the absence of all extra-logical elements.

In any branch of pure mathematics the rules of manipula-
tion used in deriving theorems from axioms inciude the
principles of logic ; in the special case of the propositional
caleulus which is used to prove logical principles some logical
principles occur twice, as formule and as principles fq:t
manipulating formule to obtain tautologies; this ma,y \oe
compared with the dual occurrence of integers in an ax10rn~
system of relations between integers. .

The principles of manipulation used in t ébroposnmna]
calenlus of Principia Mathematica are the foll*owmg —

{1) The primxiple of substitution : tautdlogies are obtained
whenever some propositional symboly’ p say, is replaced
wherever it occurs in a given tagutoizogy by some other one
and the same propositionai.’ sS%inbol An example: by
Teplacing $ in the tautology, bV~ p (P is cither true or false)

by (}meu % The* (I)oﬁowmg tautology is obtained :—

B~ v~ (B~

(2) the sylfégistic principle : if both 4 and 4D B have
been showritd be tantologies, B is a tautology. Here A and B
can be Aoy formula.

Thl\account of the propositional calculus may be concluded

“d specimen proof, typical of others in the calculus. To

"\j' , assist the reader ordinary brackets have been used. We

e \ W
\ W

begin with the primitive propositions used in Principia
Mathematica, viz, -—.

(1) pvpiop

(2) gD (pvyg)

() Bvad{gvyp)

) Bvgvn)ogvipvr)

®) @395 (pve DB
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It is required to demonstrate that the expression .
#2492 {g27)D(p27)
is a tautology. According to definition
(P29 =(~pvy Df.

Substitution of ~ p for p and ~ ¢ for ¢ in the fourth of th O
primitive propositions quoted above and replacing 3 bydts

\

definition supplies the tautology N
(~P)v(~gvD((~gv(~pv fl)\’\’"".
which, by the same definition supplies R

L BTN @)

Substitution of ~ p for p in the fifth of@he axioms and use
"\

of the definition for = furnisheg\\\‘énf similar fashion the

3

tautology ¢
€273 (6295 ¢27): (3)

www dbraulibrary.org.in

Substitution of ¢ » for p:}&:; g for g, pD v ior r in (a)
provides a tautology N

(G272 ((BSF > (p2 )
S ED BT ETCRE)) ()

which s of the type 4 3 B where A is identical with (8)

alreadyi“%iown to be a tautclogy. The second principle of

T ation permits the deduction that B, viz. the expression

' Q’D N2{g237nD(pD7), isa tautology as was required
“\19 be proved,

” This completes the account of the propositional calculus
of Principig Mathematica ; comment, criticism, and the
consideration of possible modifications may profitably be
reserved until the calculus of propositional functions has
been described,!

For further detail the reader must be referred to Principia

1
g“{?;ematima to Hilbert and Ackermann’s Grundziige der Theoretischen
§4% or to Carnap’s Abriss dey Logistik.
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The Calculus of Propositional Functions
Russell’s definition of propositional function descriled,

We have scen that the purpose of a logical caleulus is to
symbolize as completely as possible the logical form of proposiz
tions and the internal relations which hold between pm},om\
tions in consequence of their logical form, and to pfayjkde
rules for the demonstration of tautological formu‘]%i The
propositional caleulus partially satisfies these @Rﬁiﬁ’hds bat is
not able to symbolize the logical form of gack’ propositions
as cannot be analyzed into conjunctive or'digjunctive combina-
tions of simpler propositions. Considet for example the
following tautology : Ifd is BB zg-zgg’zé‘z's C then 4 is C, whose
tautological form is ensured by {He Togical form of the simpler
propositions which enter intdh ;“ts‘ composition. The resources
of the propositional calcufus w1|1 only suffice to indicate that

wwhvigd ;B i@y E%‘%A" are different propositions, but cannot
indicate that rql&’don between the structures of the three
propositions gadtich allows the third to be deduced from the
logical product of the first two.

The thfa symbolic machinery required is furnished by
Rugysglls propositional functions’® which he defines as
follows : “ A propositional function is simply an expression

. .z{\containing an undetermsined constituent, or several undeter-
.* mined constituents, and becoming a proposition as scon as
the undetermined constituents are determined. If I say
‘#1isa man’ or ‘u is a number’ that is a propositional
function™ (The Monist, 1919, p, 162), and again: ' Let
$% be a statement containing a variable » and such that it
becorx?es a proposition when  is given any fixed determinate
meaning,  Then $x is called a propositional function”’
{Principia Mathematica, vol. i, p. 15). It is easy to see the

connection between logical form aund propositional funciion
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asso defined. For it has been seen that the form of a proposi-
tion is what it has in common with all propositions whose
constituents can be put into an ordered one to one corre-
spendence with its constituents. Hence, if some of the words
occurting in the proposition be replaced by symbols such as
%, ¥, attention will be cxplicitly drawn to the form of the
proposition rather than its meaning, and the symbolig, N
construet 50 obtained will serve to define the propomthna.h
form without rcference to a specific proposition.? A\ W
Propositional functions were independently used, 'kbn Frege
and are a distinctive feature of logistic systemg ,:\they were
introduced by analogy with mathematical fuligtions and are
used in conjunction with the mathematica.i\}e‘ims “ variable ’
and ‘value’, which, in commen mth ¢ function *  itself,
unfortunately have very ambiguous meanmgs in mathematics,
The consequence in Principia: Wathematica is a lack of
clarity as to the meaning of prom&u@aa&ufmlﬁtiplbrglnch
has done much to confuse. (cs readers A short discussion of
the mathematical notmﬁs. of variable, value of a variable, and
Junction will therefm‘& bc advisable.

1 Cf. Russell, & l’mlmophy of Logical Atomism,” Monist, 1919,
o202, 1 ulegn by the form of a proposition that which you get
when for everksmgle one of its constituents you substitute a variable.’
This, howeve 13 not quite correct, since it would imply that the form
of prop Sltlcms Is a variable propositional function; the correct view
Is that.dth¢”form is what the proposition has in common with the
Vim?k{ ropositional functions derived from it by changing all its
ijli?tftuents into variables.

Y

\
\ 3
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Variable and Function in Mathematics

The purpose of this section is to give definitions of the
terms variable and function as used in mathematics and 1 N
distinguish between the various usages in which they oe(:urv

In what follows we shall often have to speak of sym‘bols,
using a word of great ambiguity which might ,ceﬁxceivably
lead to confusion. Without attempting to analyie ar describe
the meaning of the term symbol it may prevent ‘some of these
confusions o observe that, in the sense, iﬁte’hded, symbol is a
word of the same logical iype as word. .Anything that can
significantly be asserted of a word, c:‘a:n be significantly asserted
of a symbol, and vice versa{ symbols include words and

w SRR, AlBTs-Such s Eode The relation of the symbol %
to the mark or sound which is used to express it is the same
as the relation of a w&a to the mark or sound which expresses
the word.? % \\"

A symbol j§'said to be a variable in mathematics if it is
used to deflefe any one of a certain set of mathematical
objectsy which of these objects it denotes being left completely
m%{erminate.” The totality of these objects may be called

~ft‘h} field of variation of the variable, The usefulness of a

~ ‘\ variable symbol in mathematics is due to and is exhausted by
\ / its ability to denote a member of its field of variation without
an inconveniently exact specification of that member.

The values a variable can assume, or, elliptically, the
possible values of a variable, are the objects contained in its
field of variation. An example : if x is a variable real number

! This is, of course, a very sketch
symbols, words, and stgnsry Y ficcount of the relation between

1 The * ob_],ects themselves may in turn be variables.
50 '
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betwecn O and 1 its possible values consist of the numbers
0, 1 and all the real numbers which lie between those limits,
The signs chogen for variables are usually taken from the
end of the alphabet, e.g. x, », 2. In accordance with what
has been said, variable symbols will be particularly useful in
all cases where statements are to be made which apply
indiscriminately either to any member or to ¢/ members of |
a certain totality of objects. Trom this primary use of thea
signs %, v, #, etc., are derived various others which as they"’
are liable to be confused with it must be considered separatély
O

VAl
W

Various Usages of Variable Symbols:‘

N

New definitions, often used in the sequel, of thelitlustrative, formal,
determmau\e and apparent uses of a.\(af‘xable symbol.

N/

{a) A variable symbol may som,etlmes be used to denote
a member of its field of vana‘t“fo‘iﬁwlﬂbﬁaﬁgbf‘gﬁiob% iBroof
when some particular member must be chosen but any
member of the field of\varlatmn is equally suitable. A
statement contammg\»c‘he variable in this usage illustrates
relationships which hold no matter which member of its
field of varjaffoh the variable denotes. The statement
Xy = y\,< % in clementary algebra is a good
examp% %X y=1yxx illustrates all the relationships
2%335:3 X 2,4 %X 9 =9 x 4, etc. This will be

,.‘Eﬂ?ﬁéd the ¢llustrative use of the variable sign.

\/ (&) Avariable symbol may occur as part of a larger construct
Partly or wholly in order to indicate formal features of that
construct. The most important example of this use is the
occurrence of variable signs as arguments to a function,
&g % in ¢x (in statements containing ¢x as grammatical
subject), This use is quite distinct from (a); x no longer
denotes a member of its field of variation but is used to
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- complete the sign of which ¢ is a part and to indicate
that the propositional function ¢ takes one argument. Or
again the symbol x may be used in conjunction with the
name of a function to show that it is the function which is
being discnssed rather than one of its values.

The use of a variable to indicate formal properties of
symbol constructs of which it forms part will be called i&c\.‘:
formal use. Any symbol, not necessarily variable, indiéates
more or less explicitly the form of any larger syffibol “of
which it forms part, but variables are often expli tly used in
arder to draw attention to the form: cf. the aﬁlple above :
IfAdis Band B is € then A is C. Here A, B,, arc variables
which occur priniarily in the formal and not in the iflustrative
usage for their field of variation remainé/completely indefinite
and unspecified. A symbol may \(‘)f ‘course oceur in several
usages simultaneously. o ¢

{¢) A variable may be ’us.ea to denote a mathematical
‘ﬁb‘jé’cflmhlﬁy g aé&riptlon insufficient to determine it
exactly. In such a dase the field of variation of ‘the variable
consists of all the ©bjects to which the description in question
applies and yariable symbols are often used in this manner
in order te: dete:rmme these objects more exactly. This
usage wﬂl be called the determfnative. In a partlcula.rly
impettant special case, viz. reductio ad absurdum proofs,
R Variable is used determinatively to denote a member of

X ja field of variation which proves to be empty.

\\ «  {d) A variable may occur in expressions which denote
the result of mathematical operations on its field of variation.
fa#%x denotes the result of performing in succession the
two operations of squaring and integrating over the range

of variation of the variable consisting in this case of the
real numbers between ¢ and 1.1

In such cases the variable is no longer capable of further

1 .
A% part of 4? the variable also oecurs in its formal usage.
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determinations, the symbol of which it forms a part is a
constant, and in such usage the varigble is usually called
apparent. This terminology however appears to have been
invented for the Iogical calculus and does not occur in
mathematics. The variable is termed apparent as opposed to
real because it is no longer capable of varying, i.e. of being A\
replaced by a symbol denoting a member of its field of varias

‘A

tion. To summarize :— o\

in its illustrative use {4} the variable indicates” an
indeterminate member of a Euown field of variatjqrb; 3

in its formal use (b)) the variable indjcq}éé certain
formal characteristics of larger symbols in Swhich it oceurs ;
exact knowledge of the field of variation, z§\}1$ua11y irrelevant,
emphasis being laid on the mere possibility of the ¢ variation *
of a variable symbol ; e )

in its determinative use el the variable is used to
obtain a more exact des_criptiéﬁmﬁvidtbtﬁeiﬂbuiryaéi‘gim;

and, finally, in its apparent use () the variable ocours
as parts of symbols deﬁ;z\ﬁng constants obtained as the result
of operations on thﬁ\’ﬁcﬁfd of variation of the variable.!

A

Definitions of Mathematical Functions

g, &/
£\

Two ""H}I]Dly contrasted definitions of mathematical function are
~c1}rcnt i in the extensional definition a function is an extended ]
st of pairs of nambers ; the intensional definition is in terms of

#\\/ the relation part and whole between symbols.

\ 3
After this digression we may return to the definition of
mathematical function. When the wvalues of a wvarjable,
Y say, are connected with the values of another variable,
¥ say, in such a manner that whenever a value of x is known _
* The first three definitions are new; the distinctions they are

based on were partially recognized in Principic Mathematica by the
use of the thoroughly confused ‘ cap ' notation for variables.
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the corresponding ‘value of ¥ can be determined, y is said
to depend om x, or ¥ is said to be 4 Sunction of %, or there is
said to be a functional relation between x and y. These
alternative phrasings correspond to various ways of regarding
such a situation,

The case considered in the above definition is a particularly
simple one, that of a one-valued function of a single variabiégg
if several values of ¥ correspond to each value of x, ¥ is gaid
to be a two-, three-, . . . valued function ; if the kndwiddge
of the values of other variables as well as the v ﬁe"s' of x is
required in order to determine the values of y'the function
would be one of several variables. But no esSential difference
is produced by this additional complexit

It has already been seen that the purpose of introducing
variable symbols in all their varigusisages is to be able to
make statements concerning thf;i'.r‘ﬁélds of variation, varying
emphasis being laid either «on"the variable or its field of
www dbraulibracy orgin  OG°
variation according to the, purpose for which the wvariable
is being used. The c{nceﬁt of function derives from that of
variable, being the ge}xeralimd notion of the interdependence of
variables. It will'be convenient and not misleading to restrict
the discusgioiﬁto the case of the one-valued function of one
variable tiat is to the case in which two fields of variation
are FQ}IhEthd in the particularly simple fashion described
astie:"

"\,j :5'.\Let us now proceed to consider in greater detail variots

~\\J methods of regarding the functional relation First, the

N/ so-called extenstonal conception of the nature of mathematical
functions.

When it becomes necessary in the course of mathematical
Proofs to consider a relation between the members of two
classes of objects it is sometimes natural to define the
correspondence in question by enumerating the pairs of
corresponding objects in the two classes arfd to consider the
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functional relation in such a case as a correspondence between
two fields of variation, that is between two collections of
objects, rather than as a relation between two variables
(symbols}. Such is the case when each field of variation
consists of a finite number of known objects. In the
extensional conception of mathematical functions a one-

valued function is always conceived of as a many-one correla-
tion between two collections of objects, the correlation being’)

A~

N

o 3

defined by a complete list of pairs of corresponding obje'?:f:s. )

These pairs must be ordered in such a way as to inditate
which objects belong to the same collection afyo vious
tonvention is so to write the list that the left-hand members
of each pair belong to one collection, while \the right-hand
members belong to the other. On thiy ¥iew a function is
identical with such a list, x\:

This is the view of mathematical‘fi’;ffc’tion carrent in present-
day pure mathematics. The:‘.»s’@l:gp\éwclgﬂgggﬁgpa@‘(}}%vgﬁver
extended with doubtful justification to include cases when
the fields of variation in qusti’on have an infinity of members,
as happens, for exam}{hf_} if one field of variation is that of
the real variable, afid™ consists of all real numbers. Mathe-
maticians often.i‘égard functions as lists of infinitely many
pairs of numbers,

Such a, Qe}r;ition of a function as equivalent to a collection
of ordeiéﬁ"ﬁairs of objects makes no mention of, and does not
3ppt?ér o involve, the notion of a variable ; and the distinction

.~lqi§1;\wéen the dependent and independent variables, which
récurs so often in mathematics, would appear purely arbitrary
and unnecessary if imposed upon such a definition. When
however one of the two collections of objects is infinite (as in
the definition of a function of a real variable} it becomes
impossible actually to write out the list of objects correlated ;
and although this fact does not distress the pure mathematician
who contrives to think of his infinite collections of ordered
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pairs as if they were set out for inspection ! it is at this
point that the extensional notion of function is secn to be
inadequate and needs to be supplemented by the notion of
a function as expressing a law of correlation of two variables.
The alternative view of the nature of mathematical
functions regards the use of variables as fundamental and R
provides a new definition which differs in many respects fromis\
the extensional definition. For if the values of two varia.lgl‘eis;.
x and y, are to be connected without recourse to the enufieta-
tion of pairs of corresponding values, this can be aceghiglished
only by a law indicating how from any given valté of x, no
matter which, the corresponding valae of v cahbe calculated.

! The attitude referred to can be well ﬂ;u's‘is\réited by quotations
irom F. P. Ramsey's Foundations of M athematics, e.g. " Tt is obvious
that two classes conld be similar, e, capablgiofibeing correlated, without
there being any relation actually correlatinyg them * and again, " Real
numbers are defined as segments of rationals ; any segment of rational
is 3 real number. . . . I 45 not ngcessary that the segment should be
defined by any property or predicatesof tls members in any ovdinary sense
[ mﬁﬁgﬁ“&%ﬁ br is therefore an extension and it may cven

I extension wrth corresponding intension. In the same way

a fu;lctnon of a real variable is g telation in extension, whick need not
be given any real velation EWformula " [p. 15—italics inserted). These
are however statements\of a very extreme position which would
probably be qualified by most mathematicians, Thus, eg. E. W.
Hobson,' Theory of Punctions of a Reql Variable, vol. i fed. 3}, p. 272,
defines t!lE funpﬁpnal relation * as follows: “If to each point of
the domain lon Mield of variation] of the independent variable #
there be made(to correspond in any manner a definite number, so
that all sug}numbers form a new aggregate which can be regarded
as the dofudin, or field, of a new variable v, this variable y is said to
be a [ssmgle-ya.lued] function of . And although he proceeds to
say :.}_\In this definition no testriction is made a priovi as regards the
mode in which correspending to each value of ¥, the value of ¥ is
assgned ; and the gonception of function contains nothing move than
ERE motion of determinaie corvespondence tn tls abstract form, frez from
e X cation of such correspondence,”

[my italics] he Immediately adds : * In any pi{r‘ti:fllar ca;z}? however,
the special functional relation must be assigned by means of a set
of prescribed Tules or specifications,” and later explicitly excludes
theﬂclase of an infinite table of values: It is sometimes said, in order
fr.od AJStgal’tq the generality of the functional relation, that a function
;ig etonih: lxl:a?:Zst;n xOf a’rtﬁblg which specifies values of y correspond-
manifest, i we consioar by :t,m:\i?u;cy of such an illustration is
one . -« 00 aggregate of ¥ values can be defined by an endless set of
production of a norm [or law] by which

quotation are showe tn squans .bracﬁéts‘lmrtlons made in the above

-
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If both variables are taken in their illustrative usage this
connection can be neatly indicated by an equation involving
the two variables. From each such equation a law of
calculation can be extracted; for example the equation
y =sin x, where both variables occur in the illustrative
usage, will define a certain function of %, the law of calcula-
tion implicd being that the value which corresponds to any™
given value of x is obtained on finding the sine of g:’:,by
evaluating the appropriate convergent series. . O “
This conception may be crystallized into an '\iﬁi‘gnsimal
definition of function which should be contrg{t& with the
Previous extensional definition. A symboklis\mow said to be
a function of a second symbol if it contaiQs,,the second symbol
as part of itsclf, e.g. the symbol 2?is a fltriction of the symbol .
There are several important poir{t:s t6 be noticed concerning

%

this definition :— N

(@) Although applicable o fo .ém\“k&y}guﬂgrﬁmﬁﬁn the
definition is designed for u§@ only when the second symbol is
a variable, say x. x{slthen said to be an argument to the
function. ¢ & \‘

(& A functipn }nay have several arguments, that is several
different parris}cdntaining variable symbols, but for simplicity
we sha_ll.KéiUme as before that this is not the case and that
only o argument occurs.

{Q % is replaced in the function by one of its values,

_th¢* resultant expression then becomes a constant which is
\\3 s2id {0 be e value of the function for that value of the argument,
{(d) In comparing the extensional and intensional definitions

it will be seen that while the former must refer to the * mathe-
matical objects ’ denoted by the variables, the latter is defined

in terms of symbols alone. If it is considered that the correct
definition of mathematical function should have reference to

the objects denoted by the symbols it is easy to modify the
Intensional definition here adopted. The form we have chosen
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emphasizes that the intensional notion of function is always
based on the use of variable, argument, etc., concepts which
cannot be made precise except by reference to systems of
symbols, but need not invelve explicitly the concept of
object denoted.

(¢) The term function, in a meaning derived from that
given by the intensional definition above, comes to b(;'t%}:d
for the manner in which the symbol, which is the iﬁnbtion
of x, is formed out of «, i.e. for the form of the symbol which
has previously been calted the function of ,x\ “This is the
sense in whlch the mathematician will spe@:k of ‘the sine
function’ or “the logarithmic functiou\y meaning neither
a symbol nor a correlation but the wlanner in which the
function-symbol is related to ipi‘aégh’ment or the manner in
which the corresponding valmés‘bf the two variables are
correlated, ie. the form of ‘the rule which establishes the
correlation. This cenceptlon is particularly important for
VoY AR the - theory of functions of a real
variable * it is pRemsely generalized properties of this kind
of function whieh'he is, for the most part, engaged in studying.
And it is clear that this notion cannot be derived from the
extenslqnal definition of function, for the only possible
abstgactlon to be derived from a bare collection of pairs of
valtes where no law of correlation is assumed is the general

\\notlon of such collections.

(f) Anextensional definition of a functional relation between
two variables is only possible when the members of both
fields of variation are known and can be enumerated. Not .
only is this impossible, as already stated, when either field
of variation has an infinite number of members, it is also
impossible to form extensional functions of a variable x
occurring in the determinative usage. For in that casc the
members of #’s field of variation are unknown {and may not
exist) so that their enumeration is impossible. It is however
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still possible to form intensional functions of variables in
‘this usage, since the fields of variation are relevant to functions
as intensionally defined only to the extent that they restrict

the types of the resulting functions; symbols involving -

# as part can be constructed without knowledge of s field
of variation,

{g} Finally, a word concerning the ambiguities in the’

mathematical notion of function. Three definiticns of t]’if:‘.;:

term function have been indicated in the preceding fara-
graphs : the extensional definition, the intension'as{"ﬁnd a
third derived from the second of these two. 'th munber
could be easily multiplied by taking account«Of the ambiguity
of the term symbol used in the i.ntensiqn{l“deﬁnition. The
ambiguity can be best illustrated by fan’ example : When
speaking of the symbol ke, there is’ope sense {1) in which it
is sensible to speak of five tkqts(()ééurrhg on one page as
distinct symbols ; there is qn’gifﬁé‘;}‘ﬁenaq,l(gmgrwlgi@gthere
is just one symbol, the, inthe English language, while the
French language has three {le, la, les), and the German language
six (der, die, das, des,'dom, den) ; (3) there is a sense in which
le, la, les are all ihstances of the same symbol ; (4) there
may be a se‘ngeg.i:ri which der, the, le, are all instances of the
same S}m}kﬁli In addition it is possible to use the term
symbol (ih“such a sense (5) that a symbol is a particular
sensg tum.  In this sense each time the inscription on
' g\sighpost is read and understood by any person it functions
“Nas'a new symbol. These five differentiations by no means
exhaust the possibilities of type token ambiguity! and are
relevant to the analysis of the relation between the various

notions of function.

! Cf. on this teopic C. 8. Peirce : “ Prolegomena to an Apology for

Pragmaticism,” Monist, 1906, reproduced in part, with other relevant
matter, in The Meaning of Meaning, Appendix D.
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Propogitional Functions

The intensional definition of function adapted to the propositional
caleulus and contrasted with Russell’s definition.

The intensional definition of mathematical function will
serve mutatts mutandis for the definition of functions in any
system of symbols where variable symbols oceur. T\h’ti,s,: in
the propositional calculus, any symbol such as $ v Q:mair be
considered as a function of the symbols $ and q;‘&hich form
part of it ; an example of a function of ongf\’v‘a}iable in this
calculus would be the symbol ~ p. It s gasily seen in this
special case what symbols represen \the notions already

- defined for the case of mathematit;g’f functions : the field of
variation of p is the aggregate Qf\ all propositions, the valtes
of the function will be thé\ propositions which are the
contradictories of the \ﬁa*lﬁé's' of the independent variable

Wﬁ\?’%rﬂ%i55%%“5?.’tfhgfunction, and finally the variable
# occurs in both a fotmal and an illustrative use in the symbol
~ 3. The sign, &5 1s of course not a variable ; it indicates
the manner jnwhich a typical Proposition ~ p is derived from
a typical proposition p. Symbols like v g, ~ $, ete., which
oceur in:t\h'e propositional calculus, are called fruth Sfunctions
of tli¢it arguments because their truth or falsity depends

Lilyon the truth or falsehood, and not on the specific nature,

"‘j:'uof the values of their arguments.

\\} B Similarly, it will be possible to form functions whose values
are propositions and whose arguments are variables capable
of denoting any object ; we thus arrive by analogy with the
.i.ntensional mathematical definition of function at a definition
parallel to, but not identical with, Russell's definition of
propositional function. An example can be obtained by
changing the wall in the wall is yod into a variable #, furnishing
a propositional function z 4s red of which the proposition
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the wall is red is one value. The function has two arguments,
and could be represented by & 4s y where the és is the only
portion of the symbol which is neither a variable nor a value
of a variable and therefore shows the manner in which the
function is constructed out of its arguments.! This, however,

is not the view adopted by Russell, who considers, eg.xisred .
tc be a function of one argument only, analogous therefore ton

\\'\

the function sin x. For convenience, let 4s red be represepted ~

by ¢ (¢ being an illustrative variable) ; then ¢x means z issed.
The function itself Russell represents by ¢# which\may be
read as ‘ ¢x blank '. He seems to have belie;fed?bﬁétt the ¢

shows the form of a function of one argument in this case. -

\Y;
There seems no good resson to assume(’aS Russell does,
that the relational or predicative feffns in a proposition

O\ L. ;

Mmust represent the ferm of the\propositional function
involved ; this assumption serves-nbt only to complicate the
development of the calculu‘s}‘tgnt leaves, the whole y’}é’}}fﬁ of
propositional function ingonsistent and vague.?

! Tt should be noticed j:]iiat\r s ¢ would not be an adequate generaliza-
tion of the wall is red{aid would need to be supplemented by a state-
tent restricting the fields of variation of » and ¥ to objects of the same
logical type as ‘ thiewall ’ and ‘ red ’ respectively.

* Cf. W. E. Johoson, Logie, vol. ii, ch. 3, for this type of criticism
of Russell’s defidition of propositional function,

>

\



The Calculos of Propositional Functions Resumed

Having defined propositional functions we can now proceed
with our exposition of the functional calculus of Principia ,
Mathematica ; we shall give an account first of the ur%\;\r\\
symbols introduced, then the theory of types and the g}ixforn'rx
‘of infinity, and finally describe and criticize the a;f@fh of
reducibility. We begin with a number of deﬁnit:i@é'.‘. These
are based with occasional simplifications on,.those given in
the introduction to Principia Mathematiéa \"Their purpose
is to facilitate and abbreviate the discussion of the theory of
types and the axiom of reducibi]jtl\t@j vifhich the reader who
is familiar with these deﬁnitigﬁéf}riay therefore at once

proceed. PN
www.dbraulibrary org.in & \\
Quantifiers, Truth-Values, etc.
L\
N\

Manipuiation of the xféi}ons some and all in the calculus of propositional
functions. Thlé}séction and the four short sections which follow
deal” with\the"technicalities of manipulating the calenlus of
propositignabcalculus.

PN/
The/mstion of propositional function, which chiefly
digtinguishes the calculus of propositional functions from the
‘..(}gl\lculus of propositions has already been described. In order
) to remain as close as may be to some standard logistic
\/ position in the following paragraphs, Russell's definition of
propositional function will always be assumed: it will be
remembered that a propositional function is so called because

all its values are propositiens. If all the arguments of a

propositional function are replaced by definite values chosen

from their respective fields of variation, the propositional
function becomes a definite proposition which may be either
62 -
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true or false; if it is true, the propositional functien in
question is often said to have the #ruth-value truth for those
values of its arguments, while if the substitution of those
values of the argument prodices a false proposition, the
tunction is said to have the fruth-value Jaisehood for those
values of the argument. In other words the truth-valae ’
of a true proposition is truth ; of a false proposition, false-
hood. The values of a function must not be confused wath
its truth-value, for the former are propositions whlle the
latter is either truth or falsehood. -
The calculus of propositional functions now mtrobuces two
new primitive ideas which roughly correspond\to all’ and
‘there is a’ and are necessary for the analyms of general
and existential propositions. A and tkﬁri?*}s & are symbolized
respectively by (¥) and (E#),! two symbols which are attached
like indices to propositional funct:bns, converting them into
bropositions, in a manner whrch/x&woilamxhpiwymﬂg make
clear : If I(x) means a fine, ﬁasses through the point x, (x)L(x)
means all poinis have a liye Dassing through them, and (Ex)L (=)
means there is a jaomz\t}zmugk which a line passes. Or again
{(*)L{x) may be ctms;ldered as equivalent to the simultaneous
assertion of all the propositions L{x), and (Ex)L{x)as equivalent
to the asseption that L(x) has the truth-value truth for one
at least o“f;’the values of its arguments. Since these new
symbblg, are both primitive in the functional calculus it is
noLy ﬁ‘ecessary to define them, provided the foregoing explana-
~ :fif)ns have made clear how propositions whose expression in
\\ ‘ordmary language would require the use of all or there is a
are to be replaced by symbolic expressions containing ()
and (Ex) respectively. The two symbols thus introduced may
for convenience be called quantifiers, and qualified by the

! In Principia Mathematica the E of {Ex} is writter backwards;
it bas becomne quite usual, for the convenience of typography, to write
the symbals as’in the text above.
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words general and existential respectively.! There are
several points to be noticed about the use of quantifiers :—
(1) The quantifiers are for the present meant to apply
only to individuals, i.e to objects which are values of arguments
to propositional functions and are not themselves propositional
functions, but not to propositional functions themselves,
This use of the quantifiers is narrower than the use of afl
and fhere s a in ordinary speech, for the latter are oftgn\
made to refer to predicates, as when we say “thereisa cp,r,féin:‘
colour ‘T need ”', while predicates occur in the fggc%:iﬁna.[
calculus of Principia Mathematica as pro;iositiong«l@ﬁctions
and cannot for the present be quantified. The sdlctilus which
results when this condition is satisfied wil{\Be called the
testricled functional caloulusl Very s:om}"’it will also be
recessary to consider the general fu}sqtipn}il calculus?
(2) In order for propositions'inyéfyih’g quantifiers to have
- @n exact meaning the field of Jariation of the variable in
RRSAGH TR T R ar{d;stﬁéciﬁed ; it is usually assumed
in the functional calculug as in ordinary speech that the
field of variation of(the varidbles is the widest possible
consistent with the eendition that the corresponding values
of the tunctioghare’ propositions and not nonsense, e.g. for
the propositiénal function # is an ocean, the North Sea belongs
to the fielél»éf variation of x, but Wednesday does not. In
this \way “each propositional fimetion deterinines fields of
vgi@tion for its arguments?; (if a narrower field than this
) Asdesired it is usually obtained by modifying the propositional
\\; “function in question accordingly.
(3) A propositional function of several arguments will,
by the successive application of existential or general
quantifiers, give rise to several different symbolic constructs,

! These terms are not used in Principia Mathematica,

. T - . e
o Thaz‘atatement is subject to modification later owing to the theo}'y
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which will, in general, represent a number of distinct proposi-
tions. In fact a proposition obtained by quantification of a
function is not completely determined by specifying which
of the various argnments of the function are to be made
apparent by the application of existential and which by the
application of general quantifiers, for the order in which .
these symbols are applied will in general be significant. For N
example let F(x, y) = x is the father of v¥; then (Ex) i(y)
F{x, ¥)} is the proposition there is somebody who is everybody s
father but (v} ((Ex) F(x, 3)) is the proposition everg@g@y has

4 father. It is however easily seen that changu:rg the order
in a group of successive quantifiers, all of the'same kind, does
not alter the sense of the expression in J\thch they occur.
Such groups of quantifiers may therefoxg he Written {x,y,z,...)
or (Ex, v, . . .) respectively. Thusx:c.he expression

(s} (By) (E2) (w) &k, 3, 7, w).
where a number of brackets ‘fim;e “Beeh WpdbEar Y AE i o
manner which 15 suﬁicwntly obvious, can also be written
- WEY, 2)w)F(x, v, z ﬁx) without ambiguity.!

(4) It may be nof,lc‘eﬂ that any variable to which a quantifier
has been applied in some context becomes an apparent one
in that contgxt,

(5) Ha q?banhﬁer 15 placed before an expression containing
severa}\proposuwnal functions it is necessary to indicate
to wfu\h of these functions the quantifier is meant to apply ;
thé yScope of a quantifier is defined as the function to which

\t\he quantifier is meant to apply and is indicated in Principia
Mathematica by dots bracketing the scope on to the quantifiers,
€8 in (x): w0 .¢bx (or: ¢x always implies ) the scope of
the quantifier is the function éx.D . yfx, but in (x).dx:D.¢x

Aor: if ¢ is always true then Yix 1s true for the value %) its
scope is ¢u.

! These conventmns again, have come into general use since Principia
Mathematicg

F
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The Algebra of Propositional Funciions

After the symbols mentioned in the previous paragraph
have been introduced the algebra of propositional functions
proceeds in the same fashion as the algebra of propositions.
Starting with a number of tautologies, t.e. propositions
involving propositional functions and true whateve&<
propositional functions are substituted (just as the tautolpgies
of the propesitional calculus yielded true propositions"fg)r il
values of $, ¢, etc.), we obtain new tautologies by:’;tﬁe nse
of certam rules of manipulation. Apart from thf:\ additional
complexity produced by the introductiof Jof additional
symbols for propositional functions, g{@:ntiﬁers, etc., the
restricted functional calculus presents.no features which
have not already been discussed in it}\lhéasc of the propositional
calculus ; "it may however be hoficed that, whereas in the
latter a uniform procedure hgétbéén found to determine which
X&W?&E%%Qﬁi%;%l?%%%l?ﬁie%kéb that manipulation of formulz
in that calculus may proceed without use of a definite system
of axioms, this 'is,ri(:)‘t the case with the restricted functional -
calculus, where ho' uniform procedure is known for detecting
tautologies,» \This makes the use of a system of axioms
essential:{b} ‘the demonstration of tautologies in the restricted
functional calculus.

) '%”Brder_to prepare the way for the definition of integers
"\m terms of logical notions one or two further definitions
\ ./ are necessary. They include definitions of extensional
propositional functions (not to be confused with the previcus
extenstonal definition of mathematical functions which has
already been discussed), important for their bearing on

the question of the necessity for an axiom of reducibility in

the logistic systems, and definitions of incomplete symbols,

the last of which include classes and descriptions as special
cases..
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Extensional Propositional Functions

Vhen an implication, sayv ¢(x} 2 ¢ (¥}, holds between two
propositional functions for all values of the argument x it
is said that ¢ (x) formally implies  (x). Two propositional
functions are said to be eguivalent if each formally implies
the other; in terms of the symbols already defined this m@\y
be expressed as ¢

($(x) = $(x) () (plx} D =) t!i 2 95(x Y Df
If some or a}l of the symbols for proposatlcu{\ in a truth
function of propositions be replaced by “symbols  for
undetermined values of propositional furiofions, tmtk-fumtz'ons
of propositional functions are obta.med,\ég é (x). 3 (x) will be
a truth-function of ¢ and . Ipsgenera] a truth function
of propesitional functions is deﬁﬁed as a symbol which contains
the propositional functlons and whose truth-value depends
only on the truth vaiues “of these propositional functions.

~ www.dbr aullbral y.org.in

Propomhonal Fﬁnehons of Functions and the General
%5 Functional Calculus

N

By anqlogy with the representation of properties of and
reIaths between individuals as propositional functions,
p\pertles of and relations between propositional functions
“'@n in turn be represented by functions whose arguments are
\variable propositional functions. From previous discussion
on the nature of functions in general, it will be clear that any
expression in which symbols for a propositional function of
individuals occur as illustrative variables may be regarded
as a function of propositional functions; if the expression
in question is such that when the variable propositional
functions occurring in it are replaced by specific functions
the resulting expression is a proposition, we shall have a
propositional function, of functions. Hence any variables
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denoting sndividuals in such an expression must be apparent.
Examples of such propositional functions of functions would
be the expressions (x}($x. yx: D . dx) or pa where a is the name
of some individual. The introduction of such propositional
functions of functions and, where occasion arises, of quantifiers
attached to them produces a calculns of propositicnal functions

wider than the restricted calculus already described. ; \\'\

N Sy
£ >

Exiensional Functions of Functions

A propositional function of functions is said to, bévﬁmsiwdl
if it has the same truth-value for all argumén‘ts which are
formally equivalent.

At first sight it may appear obvious xﬂ\al‘c some functions of
functions are not extensional as hare deﬁned Consider, for
example, the propositional functlon ¢x has seven letiers one
of whose values is the proposmoﬁ % is a man * has seven letlers.
If in this proposition £ {s@wman be replaced by the formally
éﬁ‘fﬁ“ﬁfﬁ&ﬁ'ﬂiﬁ&ﬁﬁ%&s% Jeatherless biped the truth-value of
fhe proposition ch?u\ges from truth to faisehood. So an
example of négfeXtensional function appears to have been
constructed ", Wittgenstein (Tractatus Logico-Philosophicus)
and Camap (cf Der Logischer Aufbau der Welt, p. 62), among
others\have asserted that all functions of functions are
e)stian’slonal Cf. p. 122.
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\V Further, the distinction made between expressions such

Derivation of Mathematical Functions from Propositional
Descriptions

In the logistic thesis the problem of adeguately symbelizing mathe-
matical expressions reduces in general to the problem of analyzing
the inter-connections between propositional functions and descrip-

tions. The logistic selution involves difficulties assoctated Wlt}): N

the definition of identity. o\
‘S )

It is now our business to consider how mathe{iﬁé"sical
functions are derived from propositicnal functlfms in the

logistic system of Principia Mathemalica ; it wilb be'a simplified

account, reserving for subsequent dlSCllSSKh‘l complications
produced by the Principia deﬁmtlon\of 1dent1ty ; for the

present no difficulty will be caused By treating identity as a-

primitive or fundamental notlon. \

We need to consider two¢ mw&rm,a% g@{gsswn
involving mathematical functlons (1) expressions of which
sin x# is a typical e\{amg\he wherc the variable is real and
occurs in its ﬂJustr&(\re use, and (2) expressions. such as
sin {7 /2), derlved from expressions of type (1) by substituting
a constant f01: the variable. The Principia view is to regard
sin (m/2) 8" definite description of the number 1, since
sin {m /XL.... 1: sin (/2) is asserted to bear the same relation
to thé\ number 1 as the preseni King of England to King
Gétsrge V.

as sin ¥ of type (1) above and expressions such as sin {x/2),
is to regard the latter as completely determinate or definile
descriptions of some unique number, and the former as
tndefinite descriptions of some unspecified number comprised
in the field of variation of x.
Since mathematical functions and their values are thus
6o
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considered to be analogous to propositional functions in
general, the problem of reducing mathematical functions to
propositional functions becomes a special case of the very
general problem of exhibiting the connection between
propositional functions and descriptive phrases and explaining
how the latter may be derived from the former.

In order to render as simple as possible the account of the™,

manner in which this is accomplished in Principia M atkemaﬁ;a

it is best to start with some specific descriptive phrase) ‘say
The present King of England. TInstead of analy%h}g this

phrase in isolation a rule is given for symbolizingany proposi- -
S\LILY

tion in which the present King of England eCetws. Consider
the proposition The fresent King of England'lives in Bucking-
ham Palace for example ; thisis anal;{z}d\into the conjunction
of the two propositions There is o%e‘mﬁi only one x such thal x
15 the present King of England amf ¥ Yives in Buckingham Palace.
x lives in Buckingham Pala’f:t’, and x s the present King of
Eﬂé'}angblaggh Posﬂmn&l functions of one variable of the
form ¢x and the statement there is ome and only one ¥
satisfying ¢x is ‘syn\lbohzed by '
OHEHONy = (v =2).49)

It is important to notice (a) that the #s which occurs in

thehe\i'g bne and only one x such that . . .”” and is symbolized
by (E>) has a different meaning from the s which occurs in
. i{x 1s the present king of England ™ ; for the first denotes
\ 9 ) the existence of a particular while the second denotes what
W. E. Johnson refers to as the characterizing tie, viz. the
characteristic and indefinable manner in which a partlcula.r
is attached to a quality which qualifies it.

(%) Identity is treated as a propositional function of two
arguments. There is clearly some difficulty here since to
say two things are identical is merely a clumsy way of asserting

14 ar ) . . . r
withl .Eﬁats;)_?e # satisfies ¢ and all things which satisfy ¢ are identical
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that there is in reality only ome thing. It is difficult to see

how identity is fo be regarded as a relation between two
things, or, if it i3 not, what then becomes of the logistic
definition of descriptive phrases.! This is to some extent
overcome In  Principia Mathematica by defining two

things as identical if they have all their properties in
common. Two objections arise immediately: first that
the definition is incorrect since even if it is never true N
that two distinct things hawve all their properties in commqn,j' D)
it is yet significant to assert that they have? And, secogfib};”

on account of the contradictions which the theory qf{tyﬁes

(p- 101) was invented to eliminate, it is not per;ﬂ}:ss'“lble'in

the logistic scheme to speak of all the propertigs;which two

things have in common. The second obieég‘g.}cﬁ is met in
Principia Mathematica by the use of the aXiom of reducibility

which considerably complicates the "ﬁi’lal_\ definition.

- N
g

Plural DescﬂpﬁﬁéuMUIibl'ary.OI'g.in

Plural descriptive phrases agi\derived from propositional functions by
the technical devicg Q{’M efinitions in use involving the use of
* incomplete symbols%,* The limitations of this method are noted.

Descriptive ghitises of the type so far discussed, viz. the
so-and-5¢, carl Y derived only from propositional functions
satisﬁe{:l'%‘“ ‘one and only one argument ; and, conversely;
every'sich propositional function gives rise to a descriptive
?hﬁ%e of this kind. It is, however, easy to apply similar

fisiderations to propositional functions satisfied by more
than one argument, and thus to obtain plural descriptive
phrases analogous to the descriptive phrases already

1 It has been proposed to do altogether without the use of * identity '
under discussion. Thus, e.g. Wittgenstein says * 5.53, Identity of the
object I express by identity of the sign and not by means of a sign of
identity. Difference of objects by difference of the signs ” Traciaius
Logico-Philosophicus.

. * L, Wittgenstein, op. cit., 5.5302.
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mentioned ; the phiral descriptive phrase denotes all the
arguments satisfying the propositional function just as a
uniquely descriptive phrase of the form #he so-and-so denotes
the single argument. That s to say a plural descriptive
phrase denotes what would usually be called ‘the class of
all the arguments’ satisfying the propositional function
considered ; classes therefore enter the logistic scheme)
through plural descriptive phrases. ¢\
Speculations concerning the nature of classes and e
associated problem of the connection between th«{h@;tension
and intension of classes, to use the traditionia{ terminology,
have presented great difficulties to logicians and have received
as yvet no adequate resolutiori® The gi'(ﬁculties involved in
answering such questions can howeyek, be avoided by trans-
forming the symbols called pIOE;DSi‘t:iOﬂal functions in the
spirit of the technique of f:o'rﬁm‘l“ amalysis which we have

°

already explained. AN

L

Ch . f f 0“. .“ - )
www‘,’é%eré’uﬁi‘ﬁa}rﬁf o?natmn appropriate for the expression

of classes 1s facilitat &3}2 the fact that the distinction between
a predicate and A objects it qualifies is nmot a discovery
of logicians but 'is already made in the unsophisticated
langnage 0£ '{:ofnmon sense, This is shown by the possibility
of coqv@:ting such a statement as red is @ colowr into all red
zk'ngis.}’are coloured {things). For the purpose of reducing
;@Eematica ta logic it is sufficient to invent a self-consistent

*

R \symbolic mechanism for exhibiting this distinction systematic-

\* ally and quite unnecessary to speculate upon the ontological
N o
significance of this distinction.

In the case of the x which safisfies ¢a the symbolism chosen

1 '_' Extension, as used in relation to intension, is an extremely
ambiguous word. The traditional treatment of this topic is very
unclear owitlg to the fact that quite different notions have been
confused, and the topics connected with each of them have been dealt
with together, These confusions run throughout the traditional logic
which is based upon the metaphysical theories implicit in Aristotle’s
theory of logic.” L. S. Stebbing, 4 Modern Introduction to Logic, p. 28
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is (12) (¢); the transformation consists in the first place
of adding the same psendo-quantifier {1x) to any propositional
function ¢x. This apparently trivial alteration modifies the
form of some of the propositions in which ¢« can occur and
leads to a considerable simplification of theorems. In the
same manner we represent the x’s which satisfy ¢x by £ ($x).

New symbols cannot be derived from old in this fashion
quite arbitrarily. When defining symbols it is necessary first \\
to indicate which features of such symbols are sxgmﬁca.pt
ie. to state in which circumstances two such symbois are
regarded as identical and, secondly, to indicate the\@ntexts
in which the symbols may be correctly empioyaQ

In the case of classes the answers of PrincipnaMathematica
to thiese two demands are :— Ny

(1) Two classes are said to be ide'n\t‘ic{al‘i:f the propositional
functions from which they are derived are equivalent in the
technical sense of equivalence prgv‘iou’sly defined {p. 44); and

(2) Though no explicit statement concermng the contexts

braulib ary.on 5.0
of classes is made, the most rmportant Comtexts ateRi fact
(@) of type ae £ (¢x) i@nch means 4 s a member of the x's
satisfying ¢z, a bemgef the same type as the arguments to ¢,
and (b) # (fx)\ (x) which means the x's satisfying the
function G aull the function s simullaneously.

The statcment of the significant features and possible
contexta )of a newly-defined symbol means that the choice
of Such symbols is subject to limitations which must be

" m‘x estlgated before the symbol can be safely employed. For
\ Vit may be that the definition of the symbol is inconsistent
either with the rules of identity, as defined in (1) above, or
with the rule stating the contexts to which it is restricted,
These conditions are not discussed in Principia Mathematica.

The reason for this omission is insufficient recognition of
the distinction between formal and non-formal analysis
upon which we have already had occasion to remark. Before
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long we shall return to the question of the consistency of the
Principia definition of classes.

Definitions of Descriptions and Classes

The definitions are of the kind termed * definitions in use
that is, a definition is given, not of the symbol to be definéd
but of certain expressions containing it. Though itds not
possible to replace the symbol itself by SV‘InbOlS’ a]z‘ead.v
defined, a rule is given for translating every .expresmon in
which it occurs into expressions containing \c\)nlv symbaols
previously defined. X \

We have seen that the x sat@sfymg c;Sx is symbolized by
(%) (¢x) and the x's satisfying $x by & (%x it is also necessary
to indicate the scope of these exbx;essmns i.e. the proposition
to which {}(¢x) is to be consmﬂercd as belonging. This is
achieved by prefixing the “pseudo-quantifier [{1) (fx}} to
5'%5\13, “? ﬁeasglogﬁl w1tho s]ufﬁcmnt dots to bracket the scope.

For the sake o economlzmg symbols the convention is
made that the ,P%udo quantifier [(2x)(¢x}] may be omitted
when the scape of {%)($x)} is the smallest propositional
function céﬁtaining it. (Principia Mathematica, i, p. 181.)

Om1tth‘1g the complications due to the Principia definition
of r\d&mty {involving the use of the axiom of reducibility} the

Qefmltmn of a proposition containing (2x){¢x), say ${(1%) {cﬁx
omes

(LR ) § )T} = (B = 7—s).dy. s} Dy

Le. any statement i about the x which satisfies #x means :

one and only one thing does as a matter of fact satisfy ¢
and ¢ is true of that thing,

It will be noted that the definition is s0 chosen that if
¢ is not satisfied by exactly one argument any proposition

! This is Principia definition 14.01 simplified.
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containing ‘“the x which satisfies ¢x’” is false (and not
meaningless as it should strictly be).

Similar symbolism is adopted for classes. #{¢x) means
the x's which satisfy ¢x and any phrase in which it occurs,
sav o {£ (six)} s defined by

[£ ()] b {£ (dx)} = i {p]}.
Y _tﬁ Px @
N df
,\k}./
A
'{\/
&
Q
o~
s\‘Q
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Complete and Incomplete Symbols

This and the next three sections continue the discussion of incomplete

symhols. Russeli’s definition is stated and rejected in favour of 4
more precise definition. \\

The occurrence in Principia Mathematica of * déhnitions
in use * leads to a distinction between complete at iﬁcomp]ete
symbols, According to the definition given .r{’}e}e, the latter
are such as have no meaning in isolatjenand cannot be
legitimately used without the additiop\of further symbols.
Examples of incomplete symbols in "ciﬁs sense would be the
mathematical symbols for muiitiplication and addition,
X and -, which are used oniy in contexts such as 2 =4,
a X b, etc. ’
w“"l"\lﬂuabq% i 1'ti_%rlgyi% lbgqmé)}’éf unsatisfactory for the following
two reasons :— .

(1) It foﬂows.i;’r:o}n the definition that any propositional
function symbol,"say £, is incomplete, since it requires the
addition of-oné or more arguments x, ¥, . . . to complete its
meanin :D}’an indication of the number of variables on which
it depénds, and propositional functions were not intended to

mcomplete symbols.

."\.f N (2) To say incomplete symbols are such as have no meaning

O

in isolation is insufficiently precise language for a definition.
In one sense no symbol ean occur in isolation, for it must
be capable of combination with other symbols of the system
to which it belongs. It will be accompanied by such symbols
in all contexts i which it occurs : its syntax is part of its
' meaning ’. '

The definition of incomplete symbols can be improved either
by replacing ‘meaning’ by some more precise notion or

76
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by eliminating the reference to meaning altogether in order
to provide a formal definition based on the manner in which
symbols can oceur in systems. The first method has been
adopted by Professor G. E. Moore!; the second will be
chosen here.

L
Definition of Incomplete Symbol AN

N o

.3 \.J
The road from logic to mathematics runs from propositional funcfions
to descriptions fo classes to integers: classes havel Suffered
vicissitudes and the change from collections existing ifitheit own
right to incomplete symbols manufactured from ﬁqnbols needs
safeguards. X )

v
r

N
A symbol is complete in a given system}f symbols if it is
either undefined, i.e. occurs in the ;a\:?ic:hls of the system, or
else is defined in such a mannek that it can be replaced
in every context in which i’tjééi:'urs by a group of defined
symbols. In a definitiod® of waw eathpiedébragmind.inthe
definiens is a group of{Symbols specified independently of
any context. \x\
An incomplete, symbol is one whose definition consists of
a rule for tr.an:siérming any expression in which it oceurs
into an ¢ '}gs'sion containing only complete symbols, the
mannery m which this transformation is effected depending on
the on ext of the incomplete symbol.
.“\JI.TIese definitions agree with the usage of Principia
“\Mathematica and all symbols ‘defined in use’ will be
incomplete. From this point of view the use of classes and

. ! Professar Moore defines incomplete in a cevtain wsage ; the definition
's unpublished but is quoted by Miss Stebbing in A Moders I'niroduction
b Logic (p. 158) as follows: S, in this usage is an incomplete
symbel * = * S in #his usage, does occur in expressions which
express propositions, and, in the case of every such expression, S
never stands for any constituent of the proposition expressed.” This
definition involves the notion of comstituent of a proposition which
needs further explanation, i
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descriptions in a logistic system is purely one of convenience.
Nevertheless, the use of incomplete symbols is important for
the following reasons :i—

Importance of Incomplete Bynibols

(1) In spite of the fact that incomplete -symbols CR'I\\.\
be replaced by complete symbols in every context :'a:nd
are therefore theoretically unnecessary their introéfﬁttic;n
enormously abbreviates complicated demonstrat.&ns The
amount of paper occupied by the first part of\tku: Principia
Mathematica would no doubt be of astrongmeal dimensions
if the use of incomplete symbols were,) forbidden. This
favourable characteristic is shared by ‘all symbols whether
complete or incomplete which a;e defined in order to be

L 3

used in demonstrations.

(2) More important thanﬁf't}i'is saving in space and the
mg%mm&ﬁbﬁgim\%ﬁipﬂati@n is the fact that trans-
forming comphcated\theorems composed of complete symbols
into comparatively.simple theorems containing both kinds
of symbols leads to the discovery of formal analogies between
incompletg:\ a‘fad. complete symbols. New, incomplete symbols
are foun\& to combine in modes identical with the laws of
combination of symbols previously studied; once such a
cs@'espondence has been established, sets of theorems already
proved can be transformed at one stroke into theorems
concerning the new symbols. The advantages of this
technique are clear ; it provokes the discovery of unsuspected
relationships and a profounder comprehension of the inter-
dependence of diverse fields. The calculus of classes offers
striking examples of such analogies in the formal similarity
of the operations of class-addition and class-multiplication to
the operations which bear the corresponding names in the
propositional calculus.
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Ontological Status of Incomplete Symbols

A few remarks may be added concerning the ‘ reality * of
classes and other objects denoted by incomplete symbols,

Though it is a fact which belongs to psychelogy rather
than to logic it is noteworthy that since incomplete symbols
appear to behave like complete symbols and eventually appear\‘
in expressions which contain only incomplete symbols, the
latter attain the status of complete symbols in the gpif.nfoﬁ
of those who manipulate them, i.e. they are con,si;{efgd to
dencte ' real things " K7, \J

The metaphysical respectability of the }hmgs which
incomplete symbols denote, though it agpeai’s to need the
successful incorporation of the symbo];'s.\i'hto a calculus, is
not guaranteed when this demarrd\i% satisfied and appears
to depend on subjective factors yy&hit:h include the following :—

(1) The extent to which »t'fl:e"éymbol in question is used
and finds applications : the ‘greater, the nuymber QOL‘%R_BHCH'-
tions to and analogies’\with other symbols already accepted
as denoting real en@;\les, the more pretensions to reality our
ncomplete syrplio} acquires.

{2) The def;ision whether the introduction of incomplete
symbols ifi’ ar’ly given case leads to the discovery of genuine
mathematical entities or is merely a technical trick with no
flli%: significance is influenced by the possibility of

’ "ffqrhodciling whole systems, containing both complete and
\ “incomplete symbols by a new chojce of axioms into a new
system in which some of the previously incomplete symbols
now appear as complete. If the new system is valid such
incomplete symbols will gain in respectability. '

Nature of Principia Classes

Turning now to consider the nature of classes in Principia
Mathematica in order io decide whether the introduction of
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incomplete symbols in this connection is a valid device, we
find a curious position. Fer _clas'ses were introduced in
Russell’s earlier expositions of the logistic thesis as aggregates
or collections of objects. This fact was chiefly responsible
for the paradoxical flavour of early logistic definitions of
integers ; for an integer is a class of classes and hence,
origmally, a collection of collections of objects. Yet, for
compensation, no need was felt to prove the reality of sych
classes ; that was regarded as self-evident. Such a pheery
made the truth of mathematics contingent upon the.ekisfence
of sufficient objects in the universe of perception, a’fﬁ réguired
a special axiom of infinity to that effect, And what was
meant by the existence of a class remained ufl&nalyzed and
unanalyzable. This theory collapsed’y through intcrnal
inconsistencies associated with the exigfence of infinite classes,
and was succeeded by many ijalterna‘cive theories of
classes all less realist tham;i'tii?at described above, until
C%m#%%m#g@daé{ﬁéémded to incomplete symbols,!
But no attempt wagsthen made either to give a fresh
discussion of the ogtoxhgical status of classes or, alternatively,
to verify that the definition was technically free from defects.

Oonsiste{qj‘ of Definition of Classes as Incomplete Symbols

To i.%t:?gf‘ét classes as ipcomplete symbols is a lour de force, needing to
b ‘Safeguarded against inconsistency by methods here discussed.

"{ff When' classes are regarded in such a light that their

C \“introduction is purely a technical device, emphasis shifts to

. Russell: “ It is reasonable to regard the theory . . . as right in
its main lines, ie. in its redaction of propositions nomirally about
classes to propositions about their defining functions. The avoidance
of classes as entities by this method must, it wonld seem, be sound in
principle * (Intro. to Mathematical Philosophy, 1910, p. 183). But
ten years previously in the Principles of Mathematics he was saying
" When a class is regarded as defined by the enumeration of its terms
it is more naturalty called a callection {p. 69) and “ a class we agreed
.15 essentially to be interpreted in extension ; it is either a single term,

of that kind .of combination of terms which is indicated when terms
are connected by the word and ** {p. 80).
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the validity and self-consistency of this technique. It is not
permissible to manufacture incomplete symbols arbitrarily.
If by mischance the definition of incomplete symbols were
to lead to results inconsistent with the axioms of the
propositional calculus all theorems in whose demonstrations
classes occurred would be suspect, and classes would become
of no value as a symbolic device. This question, then, though e\
completely ignored in Principia Mathematica, is of extreme
importance in the rigidly deductive scheme which the logtstw’
definition of mathematical notions aspires to be\ Tt is
necessary to be quite explicit on this point, even att\the risk
of wearying the reader, for it is a major issue igy ﬁtc:dmg upon
the virtues of Principia Mathematica. It w111 be recalled that -
the definition of the class associated wlth\some propositional
function, ¢z say, in the slmphﬁeli “form adopted for the

S
present discussion is W

EACAR Rt (sf*xi} = ¢ {px}-

The ¢ and  which occurift th1wfmmﬁmqﬂﬁywjﬁr@1fferent
parts; ¢ is merely \prop051t1onal function proper, one of
the objects conta,1 d, in the subject-matter of the axioms, and
need have no further meaning than that, when the correctness
of the deductmns of Principia is investigated. ¢ on the
other har\dds a shorthand symbol to replace a set of words ;

m-P\ 3" any expression in which £(¢x) occurs and in applying
the\fbrmula, above it is essential that the meaning i should be

~§0 “linderstood.

\' The validity of introducing classes appears at least dubious
when viewed in this light ; for if it were true, as it is not,
that every expression containing class symbols can be trans-
formed into one not containing such symbols, such a fact
could be perceive'd only by ‘intuitive induction’, ie. by
direct recognition of the validity of such a transformation
in all the infinitely varied cases which might arise.

The number of types of possible expressions containing
&
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class symbols is infinite so that the validity of any technical
device applicable to @ such expressions must be based either
on (1) direct recogmition that every such expression is
capable of being transformed in the manner required, or
on {2} a proof bv ‘ mathematical induction ’, i.e. one which
proceeds as follows :— .
(a) The definition is verified to be consistent for some set of >
simple expressions from which all other expressions can bé:.;:
built up by the use of certain principles of construéﬁbn
(e.g. application of quantifiers, increase in the np@‘l’;er of.
variables, etc.), and (3) it is proved that the g;{\vha of an
expression by the application of any such printiple leads to
no inconsistencies. If {(a) and {5) can’ be, @monstrated, the
definitions can be seen to be consistent for'eny given expression
on applying the proofs referred to uii Bt (1} and (2) a finite
number of times. Method (1} whi't;h‘.w‘é’have referred to above
. by the name ‘ intuitive induqtig:;i{'; is specially applicable to
unorganized collections, metfgﬁd‘ (2) to organized infinite sets

.dbraulibrary.orgin.
o‘fﬂg)‘c”i)res:s?gns. yore

In regard to the definition of classes in Principia Mathe-
matica the situe}tién is as follows: method (1) cannot be
applied ; for the-expressions which can be constructed from
the material§ of the calculus of propositional functions are too
complex't§ permit of any such general survey as that method
feql.]’j{t\,s.w Further, without additional restrictions on the
’pgésibility of constructing expressions containing classes the

"*ide‘fmitions are inconsistent and lead to comtradictions.l

! It may perhaps be objected that in the actual demonstrations
which occur in Principia Mathematica the number of expressions
containing class symbols must be finite, and that it is unnecessary to
establish the correctness of the definition for all such expressions if
it can be seen to be valid in the case of the finite number which actually
occur.  Qur answer must be that unless the definition is restricted to
apply to the expressions which actuaily occur in those specific proofs
the definition must be a consistent one for all expressions which can
‘be‘constmcteq._ Otherwise, a contradiction could be demonstrated
inside the logistic calculus and eventually in mathematics; there is

good cause to assert that the unrestricted use of incomplete symbols -
does produce such contradictions,
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Russcll and Whitehead invented the Theory of Types to
eliminate the contradictions due fo the unrestricted use of
classes ; their remedy.is based on a theéry of the illegitimacy
of the notion of ‘all* and will be discussed later. The effect
of the theory of types and its associated symbolism is to
impose additional order upon the unorganized assemblage
of expressions in which classes may occur, and o prevent \Q
some possibilities of inconsistency by forbidding certain typeg®\
of cxpressions. Nevertheless, it is still not possible;"‘io"“:
enumerate the principles of construction which 'are,n'qeééd
for method (2) above, and even after the introduqtq;c?}of the
theory of types there remains no guaranteez'}that the
conventions are consistent. In fact the aqt&ors of Principia
Mathematica seem nowhere to have rec@ﬁized that any
purely symbolic device such as the in{t?t:l&uction of incomplete
symbols, or even the omission of the péeudo-quantifiers which
precede them and indicate tl}eﬁf 'éf:ope, needs justification ;
the impossibility or ex’cren}t%}:'c'ii‘i:Ij“c;lilfl_i:&fbI%{z l%ﬁg}b}l}sﬁgﬁ the
validity of the Principia M athematica definitions of incomplete
symbaols is due to the {r’:%ueness of the notion of propositional
function already. discussed.

The pcrtinepc%.':cf these objections is very strikingly shown
by Dr. Chwiés?ék’s discovery that the apparently innocent
conventjerfor omitting scope indicators is inconsistent and
has .tg\\é'abandoned. -
."\A’f’tempts have been made to remedy these defects of

“\Erincipia Mathematics in at least two ways : (#) by restricting
the logical calculus of propositional functions to the so-called
“ restricted * calculus already discussed, and demonstrating
the consistency of all conventions used (Hilbert) ; (#) by
giving a constructive definition of propositional functions to
permit of the application of mathematical induction. Of
these the first involves the rejection of the reduction of
mathematics to logic.
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Discussion of the use of incomplete symbols in the logistic
scheme might usefully be supplemented by consideration of
the analogous occurrence of absiraction and ideal elements in
mathematics which in turn assists in understanding how
mathematical objects are derived from logical.l

1 An excellent account is to be found in Professor H. Weyl's
Philosophic der Mathemaiih (§2: " Die anfbauende Mathematisch Q
Definition ).
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The Real Number

At a critical point in the logistic system surprising coniradictions
appear and must be expelled ; the problems involved are associated
with the mathematical theory of continuity, based upon
‘ intuitions * whose exact pature is always conveniently vague.

P ¢

This section will exhibit the connection between the so-called’)

mathematical paradoxes and the logistic construction ’ri’;:}a,l
number. In the course of the account it will be mi éii1;\amed
that the contradictions which occur in the logi_stii:‘ scheme
cannot be regarded as analogous to ‘slips ' innmndthematical
proofs, possibly to be eliminated by ichitéased care with
definitions and substitutions. They\asé not fortuitous
blemishes but difficulties inherent'iﬂ;ﬁﬁe conception of an
actual or extended infinity, a notj,q’;i':\ifhose uncritical assimila-
tion into the logistic scheme s&prowicetinuibrewy forgnthe
very difficulties which are<already familiar to the mathe-
matician. The treatmert of Principia Mathematica and the
logistic philosopherg in general has clarified the questions
which are inVOl‘:?f{d.. but has not succeeded in eliminating the
difficulties, \“

We begin"by considering the relation between the notions
of real.&m;ﬁb_er and the ecomtinuusm. The real number,
is asoncept intimately connected with that of the
Ohtinuum and enters into thdt part of pure mathematics
which is specifically concerned with problems arising from
the analysis of continuity. Of this domain the most important
for present purposes consists of the infinitesimal calculus and
the modern theory of functions which are usually grouped
together as analysis, a term which excludes both arithmetic
and geometry. The relation between these three disciplines
can be expressed summarily by stating that the method of

85
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analysis essentially consists of applying arithmetical methods
to the manipulation of certain geometrical intuitions of
continuity.

In order to amplify this statement, whose conciseness would
otherwise be misleading, it is necessary to supply a more
detailed description of the so-called intuitions of continuity. .
It is a remarkable fact that, although the mathematical theory N\
of continuity is alleged to be based on direct experiences of’)
continuity, no descriptions of these alleged experiences, are to
be found in the literature of mathematical philosag{fyi The

v . $

following is.an attempt to describe some at least gfthe features
of these experiences. We shall not need to nake any assump-
tions at this stage concerning the psychelOgical or epistemo-
logical status of these intuitions’ .\'It‘will be convenient
to confine our attention to the visual field where intuitions
of continuity are least vaguel“not prejudging, however,

- ”. . a0

questions of the existence~and status of intuitions of
conti e Py R V@S Hf Ssensations associated with sense
organs other than th{\eye.

‘I_ntuitive’ ing ﬂ{}e‘ sense used here is to be translated
approximately by  direct * and ‘ not arrived at by a process
of reasoning®. The purpose of our inquiry does not demand
2 more €xact description of the meaning of this term.!

1')§‘d’ist‘mction needs to be made between direct or intuitive
experience of continuity of the visual field, i.e. of a field of sense data,
~atid between intnitive {i.e. not based on premisses} beliefs as to the

”~ ::\;:onhnuxty of physical space. These two senses of continuity are often
\ \ “confused, e.g. by Weyl who uses ‘ continuwm * sometimes for portions
: of pl}y51ca} space {or space time)] as in the sentence “ Dravon zun unter-

scheiden ist seine Verwirklichung an einem konkret vorliegenden

Kontinuum, wie ¢s die raumliche Sirecke isi [Philosophie der Malh.,

P 43—my 1ta.}1cs] and sometimes for a continuum of sense data,

e.g. in supporting Brouwers objections to the fertizom non datuy ' Das

passt sehr gut zu dem Charakter des amschanlichen Kontinuums;

df.-nn in ihen geht das Getrennt-sein zweier Stellen, beim Zusammen-
ruck_en sozusagen ‘gr'a.duell, in vagen Abstufungen, iber in die Ununter-
scheidbarkeit ™" (ibid.}. _ Presumably in stating “ Die Mathematik
gewinnt mit Brouwer die hiichste intuitive Klarheit ™ it must be to
the (alleged). connection between Brouwer’s analysis of continuity

and direct intuitions of continnity to which he is referring; but he
nowhere supplies a precise description of these intuitions.
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Intuitions of Continuity in a Sensory Field

* [ntuitions * of continuity are here analyzed into an apprehension of
connectivity and the possibility of iudefinitely continued division ;
neither is directly observed and both must be translated, in any
accurate logistic analysis, into statements concerning the multi-
plicity of symbals denutmg portions of the continuam.

First it may be asked whether any such intuitions exjﬁfx
Before the elaboration of logistic ideas geometry and, tﬁmugh
geometry, analysis, was universally believed to h&\bﬁsed on
some geometrical intuitions such as we are trymg to discover.
Thus Dedekind in formulating his matherhdtieal analysis of
continuity said : * Es ist mir schr lieb, v@nn Jedermann das
obige Princip fi.e. the principie of \gontmmty we shall soon
have occasion to describe] so emleuchtend findet und so
iibereinstimmend it seinen K omteﬂ!m:gen von eimer Linte;
denn ich bin ausser Standb .1rgemlwemthM§eigf &g igeine
Richtigkeit zu bringen, uhdl Niemand ist dazu im Stande ”
(Stetigheit und [ rmtw‘n\}le Zahlen, p. 11). That is to say the
principle of contrnb@} is obviously true {einleuchtend} because
it agrees \mth everybody's representahon or conceptwn
(¥ orqtellung\} of a line.

Althou‘gsh the continuum which is the subject of mathe-
ma k\ﬂ,l inquiry is in the first place a geometrical continuum
(dn\l eal continuous line composed of points) and, eventually,

:"\an arithmetical continuum, i.e. a collection of real numbers,

it is necessary to begin with intuitions of continuity in
the visunal field.

Intuition of the continuity of the visual field consists in
apprehending () the comnectivity of various portions of the
field and (5) the possibility of infinitely dividing any portion
of it. The field is conceived to have no gaps, to hang together,
and to be capable of division into successively smaller portions.

87
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On examining in more detail what is meant by (2) and (8) we
observe that in one sense of ‘ connected ’ the visual field is

-certain'ly disconnected and not free from gaps; this is the

7 %

sense in which the blind spot would be said to constitute a
gapin the field. But thisis not the sense in which the intuition
that the visnal field is connected formed the starting pomt ~
for the formulation of mathematical continuity; it, {5
connected in the sense that “ we can’t see any gaps i (i)
And in #his sense the statement that visual space is cantmuous
is a tautology. There is, however, another genu@e sense in
which we have intuitions both of visual connécfiwty and of
visual disconnectivity, not of the parts whith compose the
whole visual field but of elements whicl *c)mstltute a selection
or abstraction from it ; e.g. it may besobserved that ene band
of coloured light consists of strllbs of various shades of red
connected without the mtel:verftlon of other colours while
another consists of strips" of red separated by strips of
bt HEYUPH RIS B band would be said to be connected
and the red in the\s%cond band would be said to be dis-
connected. And\{he so-called connectivity of the visual field
is derived fram the intuition of the manner in which patches
of the saing dolour {possibly of different shades) may be either
separat\i“ or in proximity. Hence part of an analysis of
whais meant by saying that the visual field is conmected might
p}clude the statement : given any portion of the visual field

\ “there is another portion of the field bearing to the first portion

the relation of contiguity, i.e. the relation between red patches
of various shades when no other colour separates them.
Hence the important result that the connectivity of visual
space is in no way a property of the field taken by itself,
but a relation between the field and * portions’ of it. Whether
the field is connected or not depends on what is meant by a
portion of it ; if the portions were differently defined the
visual field might become disconnected.
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As for the alleged intuition of the infinite divisibility of

visual space, it may be doubted whether any such knowledge

is furnished by intuvition. The possibili'ty of endless division
appears to be a schematic programme abstracted from the
(directly apprehended) relation of one portion of visual space
to another which contains it. When it is postulated that any
portion of visual space could contain a smalier portion, it is

difficult to understand how this fact, if it were 2 fact, could.,
be apprehended directly. Here, as in the case of cpnnectivit,y‘,' v/

£ Y
the  intuition’ consists of postulating certain hypothetical

¥

relations between portions of the visual field, \ these
hypothetical relations being based upon theQréJﬁtion of
‘ containing ’ or ¢ including * actually observed between some
portions of the field. N

W
Our conclusion is therefore that hoth)the - connectivity ’

and ‘ infinite divisibility ~ of the vgsu.%;l'ﬁeld are forms of the

|\

various ways into which the field 'ca’.h’ be regarded as divided
into portions, i.e. if for any such Qiisiogsngh OBl portions
but the relations of contiguity and ‘ containing ’ between
them were symboﬁ;ﬂd,\ the °connectivity’ and infinite
divisibility could Ee\t\fénslated .intoc statements concerning
the multiplicity.(c;f: defn. p. 33) of all sentences constructed
from these i}ffhﬁols.

X %
£\

R\
.«T‘kg\e evolution of the notion of continuvity from Greek mathematics
\ V" through Dedekind to Principia Mathematica. Uneritical applica-
tion of the notions of .connectivity and infinite divisibility to the
space of geometry, conceived as real, provokes paradoxes {Zeno).
The connection between continuity and the possibility of measure-
ment leads to the discovery of a mathematical device for comparning
incommensurable pumbers (Eudoxus) and o eventually to a
purely arithmetical conception of the continuum. The Achilles-
Tortoise paradox and Eudoxus' construction are discusged.

Continuity in Geometrical Space

The next stage in the formulation of mathematical
continuity is the transition from the continuity of the visual
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field to the continuity of space. At the level of Greek mathe-
matics the connection between the two was inevitable, for
the geometry of Euclid was never doubted to be the geometry
of actual space, i.e. an idealization by subtraction of irrelevant
details, optical illusions, ctc., of the geometry of the sensory

fields. Yet the application to physical space of the concepts .

of connectivity ! and of infinite divisibility immediatgl_&z\\
produced contradictions. For on the one hand it se&(ﬁe@
necessary to demand the infinite divisibility, if not of, thatter,
then certainly of space. If, however, space was real S{’f'éould in
no way be regarded as something unfinished or infthe process of
becoming and the application of the concept efvinfinite divisi-
- bility to it would seem to be unjustified. Aheapplication of the
notion of infinite divisibility to reality‘conflicts acutely with
the recognition that this divisibilit{sf is:essentia_lly a process.
In their most acute form thesxﬁf:d:iﬁ’jculties were formulated
in Zeno's paradoxes : Achil],é.g«':’an never catch the Tortoise
if\ahewsﬂdmmbblﬁnsi-citg;iffé? when Achilles has reached the
position where the T t{pise started, it has advanced a little ;
and when he has redched that second position, it has moved a
little farther ﬁQr\;rard. Thus Achilles, in order to pass the
Tortoise, mlist “actually perform an infinite number of acts,
which ig\impoaqible.
T. E:tiEmonstration very clearly exhibits the contradictions
préduced by the notion of the reality of the extended
'"\‘i’rffinite. It may be expressed in another form: if a line
\'\; “in space actually consists of infinitely many points, no motion
at all is possible, for the smallest shift of position would
invalve the crossing of infinitely many points, ie. the
actual performance of an infinite number of acts.?

* The difficulties produced by the application of connectivity to
physical space were principaily centred around the possibility of
empty space and are of less importance for the present discussion.

® Russell's discussion of the Achilles-Tartoise pavadox (Principles
of M athematics, p. 350 takes an alternative and perhaps less interesting
interpretation. * The slower ™ he says " will never be avertaken by
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Zeno’s paradoxes attacked not only infinite divisibility
(ie. the existence of the infinitesimal) but also finite divisi-
bility (i.e. atomicity). Nevertheless, in the conflict between
atomicity and infinite divisibility the choice made both
in the geometry of Euclid and in the development of pure
analysis in the nineteenth century was that of accepting the
actual infinitesimal. Thus the geometrical line was regarded )
as composed of infinitely many points, the -end—products{“o'f..“':
the infinite dividing process, conceived per émpassfb,gé s

*

actually completed. _ AN 3
The importance of the notion of indefinitelydontinued
divisibility of continuous lines in geometry fgvdue to its
connection with-the theory of measuremer}t,\\e{ the possibility
of the exact specification of congruent‘strét'ches 1 of lines by
means of numbers, which we now jsir,of:éed to explain.
With the help of the notion of-gongruence it is in the first
place easy to explain how to ,qbtéin from any given stretch L
another stretch L' whose Jenigth s, angbindesmal- maltiple of
the length L. It fo}loﬁw? immediately that the lengths of
two stretches L, L;\\cé:n be compared if each is an integral
multiple of the(length of L ; for if m x L, is congruent
to » X Lz,:ﬂ;?'é.’l"ld »n being whole numbers, and #m X Ly
denoting & stretch whose length is = times that of L,, the
lengthlef-L, will be #/n of the length of L. In particular, if
Sofni’s,\a.rbitrary stretch L, be taken as a unit of reference, all
.\sﬁé‘cches L such that two numbers m, », can be found to
\tpecify their length in the manner described (.. all stretches
commensurable with L) can be assigned a fraction m/n to
specify their length. If on a line A some point O is taken

the swifter, for the pursuer must first reach the point when the fugitive
is departed, so that the slower must always necessarily remain ahead ™
{ibi¢.}, The comment which immediately follows is ‘* When this
argument is translated into arithmetical language, it is seen tc be
concerned with the oneone correlation of infinite classes * (ibid.).
Thus Russell in his discussion accepts precisely the attitude of the
extended infinite which the paradox, in our interpretation of it, attacks.”
1 A stretch means a finite portion of a line between two points.
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as origin, points A(3), 4 (2}, 4 (§), . . . can be associated in
this way with each positive and negative fraction.

T T T T T : T A
A(—2) A-H 0 A 4Q) A2}

The Greeks discovered the existence of incommensurable .
lengths, e.g. the fact that in an isosceles right-angled trianglé\\
whose sides are equal in length to the unit stretch, L{{,:ttxe
hypotenuse is incommensurable with L. Nevgr‘tﬁélcss,
geometrical intuition shows that the hypotenus? {é"i}uestion
can be transferred to the line A, i.e. that therelis-some point
B in A such that the stretch OB is Cengruent io the
hypotenuse. ' \\

The incommensurable lines appeared,“in fact, to have the
same status as any other lines foi{ ‘the following reasons :—

(1) They conld be g:eometrigasﬂy“éonstructed.

(2) The incommensurablg,fl’i'ngs could be approximated to
as closely as desired by.'(‘;érﬁmensurable lines ; i.e. in the
represetn el W& inmensurable points Ad,, 4, to the
left of the point &,)and commensurable points A7, 4, to
the right of B‘ canl be obtained, and such that the distance
A4} becomes-as small as we Please for sufficiently large #.

The -p{r;t'\ which (1) plays in the so-called geometrical
intuitienof continuity is often forgotten ; it is, however, a
m\ e to imagine that (2) alone will furnish the existence

.“\‘b‘f'incommensurable lengths, The mere existence of the two

“\\converging series olpoints 4, 4,, . .. 4,, and Aj4;, .. AL

furnishes no intuitive evidence of the existence of a point to

£l the gap.  Intuition cannot discover the existence of the

(infinitely many) gaps left in the line X even after all the

points obtainable by constructions in Euclid’s geometry have
been named

! Cf also Galileo's demonstration {Dialdgues Concerning Two New
Sc:en;es, trans. by Crew and Salvio, pp. 20 sqq.) that the conception
of a line as composed of an extended infinity of points requires also the
existence of an infinity of gaps in the line.
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For the Greeks the existence of an incommensurable length
was demonstrated by its geometrical construction.

Fudoxus’ solution ! of the problem of the existence of
incommensurable stretches consisted of postulating first the
so-called Archimedean axiom : If Ly, L, are any two stretches
then L can be added to itself, say » times, antil % X L;is
greater than L, The effect of this axdom is to eliminate the\\w
possibility of the existence either of infinitely small oX of
infinitely large stretches. And in the next place the"l‘atlos
of four stretches taken in pairs L, Lz, L} : L} are. qqual if,
for all integers m, #, .“\\

nl, > mL, implies #L] > wmly’

nL, = mLg4 implies nL} QmLQ

nl, << mL, implies \izl;’l ¥ mlL)
In this manner the length of aﬁ'iﬁc'ommensurable stretch,
{ say, is determined by a dlmlon of all the rational numbers
mfn into three classes, v1z those Wh:n:hbareI lgss than /, those
equal to , those greater, than i: c? t eg%%c;nldacﬁ gontams
either no, or exactly.‘q}xe, member.

Pedekind’s Definition of Real Number
N \

Dedekmds ana.lysm of continuity is a natural extension of the mathe-

‘g atical method due to Eudoxus. The Dedekind definition of real
mber and a few of its consequences are discussed.

D If Eudoxus’ definition of the ratic of incommensurable

lengths is used in conjunction with the criterion, already .

mentioned, of the existence of stretches, viz. that they can

be constructed by the use of ruler and compass alone (for

these were the only geometrical instruments used in Greek

geometry) it is found that all those numbers  exist * which

can be obtained by applying to the rational numbers, any finite
1 This account is based on Weyl {op. cit,, p. 31}
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number of times and in any order, the operations of taking the
square root and the ordinary arithmetical operations of
addition, subtraction, division, and multiplication; but
numbers whose expression mvolves roots of higher orders
cannot be cbtained in this way. These so-called ‘ irrational *
numbers however can often be given interpretations which,
make their existence intuitively plausible even at the stage™
at which the Eudoxian definition is regarded as satisfagfd{y.
Thus, for example, the cube root 6f @ can be interpre’ge’ti.’as the
length of side of a cube of volume 4. If the nu\rg'ber ais a
perfect cube, i.e. can be expressed as the cube gs(éorne rational
number, then there is no difficulty. If thisNs not the case,
e.g. if @ is any prime number, any ma.t.eQal' cube of volume a
could have a side whose length cqu\l‘d{nét be expressed by the
Eudoxian definition. Nevertheless,"it is easily proved that
any number of material cub.es:ca:r.l be obtained both greater
and less than a cube, thgsé;'si'Eles have rational lengths and
wh@wwhuﬁbsaiiﬁwgsﬂiﬁﬁe as required from the volume of a.
Thus, eithera physj.cé\cube can be obtained whose volume is 4,
and this will mean'\that the Eudoxian definition is inadequate,
or no physical cube can exist whose volume is @. The second
of these g{t’@iﬁatives is highly repugnant because it appears
fo m\{ok%?e' gaps in the series of rafionel numbers which may
beﬁé@d’to denote volumes, and arbitrary exclusion of rational
olumes seems no better than arbitrary exclusion of

\donstructible rational lengths, This type of argument

applies of course to transcendental numbers as well as to
irrationals of order greater than two. With the progress of
mathematics the criterion of constructibility on a Euclidean
plane begins to appear purely arbitrary ; # soon comes to be
as ‘teal " as /2.

it is at this stage that Dedekind produces his abstract
definition of pure number. Suppose the rational numbers are
divided 4n any way into two classes, L, R, say, such that
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(i) all the members of L are less than all the numbers of K ;
(ii) I contains at least one rational number ;

(i) all the rational numbers belong either to L or to R.

Any such division is called a section of the rational numbers.
Then there are two different kinds of sections possible :—

{a) Either one number in L is greater than all the other

numbers in L or one number in R is less than all the other
numbers in R (or here excludes and). ¢\J

() Or no number in L is greater than ali the other num]a‘orw's
in L and no number in R is less than all the other xI\ﬁiﬁbers
in R. Incase (b} it is easy to show that the difference between
two rational numbers, one chosen from L theether from
R can be made less than any number, howgyer small, given
in advance. L and R converge fogether hut, as distinct from

case {a) no rational number separates them. If (3)is the case,

2 ‘real’ number is said to be deﬁﬁéd by the section, and is

conceived of as a number, on thé; ‘samed};wel _abs the'ratiqnals

which compose L and R, and ﬁ]hgg the glefbilbeli% ehi' $hém
. N\ . .

The quotation frorjl'}Dedekmd already given on p. 87
leaves little doubt ‘as\to the status of his definition. It is
essentially the definition of Eudoxus generalized to the extent
that the critetion of constructibility has been dispensed with
{for it dogs fiot matter how L and R are constructed provided
they pdsséss the three properties detailed above); but the
existente of the real numbers is still based in some vague

mgense on geometrical intuition. _
" It is necessary to interpolate at this point a short account

I The principle was actually given the following geometrical form
when first enumerated by Dedekind : *“ If all the points of a kne
are separated inte two classes such that every point of the first class
is to the left of every point of the second class, there exists one and
only one point which preduces this division of all the points into two
classes and divides the line into two parts in this way. '—{Sietigheit
w. irrationals Zahlen, p. 11, translated.) In the fext the more arith-

metical form which is now usnal has been chosen but the two state-
ments are essentiallv equivalent.
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of the mathematical consequences of the Dedekind definition
of real numbers :— -

(1) The real numbers as defined by Dedekind Jeave no gaps
in the field of geometric intuition. This can be expressed
more exactly in two ways which are equivalent: if the
Dedekind definition is applied to the real numbers, dividing
them into classes L and R with the properties stated, IQ\‘
further numbers are obtained.! The alternative phrasing, 15
as follows : no system of objects, S say, can be found ;csﬁeﬁ’rig
the axioms which the real numbers obey and conté,hﬁhg all
the real numbers as a subclass.? K7

(2) Any particular real number must be def:l}ed by actually
stating the method or law for dividing the rational numbers
into L and R and in all such cases it ig tee in general that the
properties of the real number in gz}bétion can be expressed in
a rather more complicated fashic;xi’ﬁs properties of the rational
numbers which are used inylhe definition of the specific real
mmtﬂhl'aﬂfﬁsais;mg}mj@s{éé however in certain very general
theorems poncerninthe ‘properties of functions (i.e. certain
infinite colIect@ou{:p real numbers) ; these are the crucial
cases where I:He\contradictions inseparably connected with
the extended.infinite reappear. The case of the so-called
* theorerty of the upper bound’ is discussed below.

It-igiinteresting to see that Dedekind himself appears to
b "been well aware of the provisional nature of his definition.

SHe says: “ Die Annahme dieser Eigenschaft [ie. continuity
’ as defined by the existence of real numbers] der Linie ist

nichis akf ein Axiom durch welches wir erst der Linie ihre
Stetigkeit zuerkennen, durch welches wir die Stetigkeit in

1 This statement is, of course, based on the ordinary realistic view
of real sumbers. It would not be true in the intuitionist mathematics
becanse it would have no meaning to talk of two classes L, R of real
aumbers in this way.

® This is the formalist enunciation of the property and is used by
Hibbert as a definifion of continuity, i.e. by postulating the * Volil-
standigkeit ' of his system of geometrical axioms he ensures Dedekind
continuvity : ef. his Grundlagen der Geometrie.
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die Linie hineindenken. Hat iiberhaupt der Raum eine reale
Existenz, so braucht er doch nicht notwendig stetig zu sein ;
unzihlige seiner Eigenschaften wriirden dieselber bleiben,
wenn er auch unstetig wire. Und wiissten wir gewiss, dass
der Raum unstetig wire, so kénnte uns doch wieder michts
hindern, falls es uns beliebt, ihn durch Ausfillung seiner
Liicken in Gedanken zu einem stetigen zu machen; diese
Ausfiilling wiirde aber in einer Schépfung von neuen Punct-

Individuen bestchen und dem obigen Princip gemiss auszu-\\ -

No/

fithren sein * (Stetigheit w. ivrationale Zahlen, P- 11 4.).2 5
K7,
) ,\ &
The Logistico-Mathematical Paradozes "
The paradcoxes are classified according as théf\ban or cannot be
accurately expressed in mathematical sympolism.

LY
&l ¢
N

The paradoxes and contradicj:i;::;‘is’ nod\&é to lbt? described fall
o AT A ibr .y i
naturally into two classes im= w-chratibrary-org.n

{2) Those which are due'to the vagueness of words.

(8) Those which canﬁi‘\)e’: expressed in exact mathematical
symbolism. O '

Of these two{j{bj“is by far the more important, for those
features of ,(g));v’hich do not reduce to () belong to a discussion
of the lit@ta:tions of any language which has evolved historic-
ally ‘aé;\&n instrument for practical communication, rather
th?.lijl\;'fo a discussion of the foundations of mathematics.

1 The assumption that a line bas this property [continuity defined
. by the existence of real numbers] is no more than ar axiom by which
the continuity of the line is recognized, or by which the line is
conceived, in our thinking, to possess coptinuity. If space has any
real existence at all, it need not be continneus, for innumerable
properties would remain the same if it were discontinuous. And even
if we were cortain that space was discontinuous nothing could prevent
us, if we pleased, from making it continuous by conceiving iis gaps
filed ; such a process would consist of creating new points and would
have to proceed in accordance with the above principle [i.e. the definition
of real number].”
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It will be well to quote a few examples of contradictions
both of type {a) and (5). The letter which follows the
description of the contradiction refers to this classification.

(1) Weyl's contradiction® (a).—" Some adjcctives have
meanings which are predicates of the adjective word itself ;
thus the word ‘ short ' is short, but the word ‘long’ is not
long. Let us cail adjectives whose meanings are predicates.
of them, like ‘short’, autclogical; others heterologispl.
Now is * heterological * heterological ? If it is, its ii:léaﬁing
is not a predicate of it ; that is, it is not heterglii‘gi’cal. But
if it is not heterological, its meaning is a'{ir’ icate of i,
and therefore it is heterological. So we\have a complete
contradiction *’ (Ramsay, Foundations sf\M. athematics, p. 27).

(2) The least infeger not named {f{t[{és‘ﬁook 2 {a)—Some, but
not all integers occur in this book,:gi‘ther as the corresponding
cipher (the numbers at the,],:@ad’of each page for instancc)

or as an integer which saﬁgﬁes a description. Only a finite
www_dbraulibl'ary.org,inﬁ’:.

1 Vide Das Kontinumiph2 : “ Ein Eigenschaftswort heisse autologisch
wenn deses Wort selber die Eigenschaft besitzt, die seine Bedeutung
ausmacht ; falls,es ig nicht besitzt, heterologisch. Das Wort “kurz’
z.B. ist seiber kukz\ein nur aus 4 Buchstaben bestchendes Wort wird
man in der deptschen Sprache ohne Irage als ein kurzes zn bezeichnen
haben) daher‘adtologisch; das Wort “ lang * hingegen ist sclber nicht
lang, daher ‘heterologisch. Wie steht es nuan mit den Wort
! heterqgg’isch *?  Ist is autologisch, so hat es die Eigenschaft, dic es
aussagl/ 3st also heterclogisch ; ist cs hingegen heterologisch, so hat
es diede"Eigenschait nicht, ist also antclogisch.” Weyl's own solution
isnfhiit the gquestion whether the word ° heterclogisch ’ is itself hetero-

\or Autological cannot be given any sense.

W% ¥ A refinement of a paradox given by Russell, of. Principia
“\ " Mathematica, p. 61, subheading (5). The paradox as given there

is too vaguely stated to carry much conviction. The invention of
contradictions is one of the lighter sides of mathematical logic. A good
example is that of the barber in a village where all and only the men
wha do not shave themselves are shaved by the barber. Ii the barber
does not shave himself, he is one of the men who are non-shavers and
is therefore shaved by the barber, ie. by himself. If, on the other
hand, the barber does shave himself, he is one of the men who shave
themselx:res, hence he is not shaved by the barber, i.e. he does not
shave himself. Symbolically, the definition of the collection of men
can be written #{xS5x = ~ (b54)} (5= shaves, b = the barber], and the
fallacy arises from the substitution of b for ¥ in the defining equivalence.
This Hlustrates the very important point that the mere formation of
a definition of a class does not guarantee the existence (freedom from
coniradiction) of the class.
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number of integers can occur in the book in this way for the
number of words in the book is limited. Consider now fhe
least integer which does mot occur in this book. This phrase
defines just one integer, hence by definition that integer
occurs in this book, which is a contradiction.
(8} The class of all classes which are not members of them-
selves (B).—** Let w be the class of all those classes which are L N
not members of themselves. Then, whatever class # may be, N
‘xis a w’ is equivalent to ‘x is not an x'. Bence, giving toiw-j” )

L N/

% the value =, ‘w is a w’ is equivalent to ‘wis not a W\
(Principia Mathematica, p. 60). Since classes are incqmp\iefe
symbols, this contradiction can be translated inyterms of
functions and in this form the cause of the cdntradiction
becomes very apparent. Let W be a functiq??éf functions
X snch that . \\\ '
WX) = ~ X(X) ™

Substituting W, which is a functios, for X in this equation
we obtain W(W) = ~ W(W),~1&7 "eIbianbb auyer BAW).
On the other hand if ~ J(W), the same equation gives
W{(W) hence in either .éaje a contradiction.

(4) Burali-F wtt"s..cbn vadiction 1 (B)—(This paradox is
inserted here onQa\cém’mt of its mathematical importance and
requires son}e\:knéwledge of the mathematical theory of
ordinal numbers.)

The fgﬁ‘m;'ing three theorems can be proved in the classical
thepr;); 0f ordinal numbers developed by Cantor.?

“h 'Every well ordered series has an ordinal number.

(i) The series of ordinals up to and including a given
ordinal number, say 0,, has an ordinal number Oy + 1.

(iii) The series of all ordinal numbers is well-ordered and
hence, by (ii), has an ordinal number, 2 say.

1 “ Una questione sui numeri transfinite,” Rendiconti del civeclo
matematico di Palermo, vol. xi (1887). See also p. 208 below.

2 Cf, for instance, ]J. E. Littlewood, Elements of Theory of Real
Functions, chapter 2. :
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But from (ii) the series of all ordinals including £2 has
ordinal number 2 + 1 which is greater than Q, Hence 2
cannot be the ordinal number of all ordinal nmumbers.

Solution of the Paradoxes

They are produced by lack of indication of the field of variatib’:\\.\of
a variable in its determinative usage. Special technical devices
{theory of types) are néeded to ensure the appropriate réstrigtion
of fields of variation. : N

On examining the contradictions of whic@.{ﬁé‘above will

serve as examples it will be seen that thoseoftype {a) have a

certain circularity in common with thosd cff’%ype (B), differing

only in the relative inexactitude of motions like' description,
adjective, occurving, etc, This\'ijnékactitude consists  of

(a) type token ambiguity and{{(})" vagueness, which may be

defined with reference to s,ifﬁafions where it is impossible to

decide whether the te{mfiﬁ question applies or not.! When
wthis_cﬁ@ea{ﬂebim@eoig.éﬁ;ﬁmated by the use of more precise
symbels, which Nn'@y then be written in the form of the
propesitionak c\éﬂehlus for convenience, it will be necessary
to give niles stating which kind of symbol can stand as
argumert’t6 a given functional symbol. For it has been seen
thatsin/our coriception of the nature of the propositional
ndtion the argument forms part of the function-symbol ;

\}nd unless the field of variation of the variable has been or is

NS

capable of precise definition, the meaning of the propositional
function will be indeterminate. It has been already explained
that a variable may be correctly used (determinative usage)
to obtain a more precise description of the field of variation
when that field is initially unknown.

The essential feature of the fallacies committed in the four
contradictions given above is therefore as follows: the

! Red, for instance, is a vague concept because colours may be
presented fer which it is impossible to say whether they are red or not,
Le, for which the question ** Is this colour red ? ** begins to lose meaning.

cf. the anthor's *“Vagueness,” Philosophy of Science, iv, 427-455.
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field of variation of the variable involved is taken to be alf
the members of a certain class which proves to be wider than
the variable in its determinative usage permits. The example
of Weyl’s contradiction will illustrate this: if heterological
is heterclogical this means, by definition, that its meaning is
not a predicate of the word itself, i.e. its meaning is defined

in terms of its meaning and we are ne nearer understanding
what this meaning is. Thus the word heferological cannot be )

part of the field of variation of the argument of the funcfciﬁ;:i
heterological. The fallacy consists of assuming that t}{g“f‘r,eld

includes all words. RS
Russell’s solution of this difficulty is to adopt the principle
that no function can be a value of its own ment. This

restricts the field of variation of every y&nié.iﬂe and eliminates
the contradictions. The effect of the prificiple is to segregate
functions into distinct types or..’Ie’.vel.s. No function can
take a function of the same or.:lligl{ér type as level. That is
the first part of the Theory Gft j'yﬁﬂsw.dbraulibrary,org,jn

&
Note o Types and Orders
The method adoptei;‘win Principia Mathematica for restricting fields
of variation Smvolves a hierarchy of types and a subsidiary
hierarchys of’ orders. The latter is untenable and must be
abandgnsl” two methods for dispensing with it are notcd.
Tf}e,\&gregation of propositional functions into various
leyil‘s"br types according as they are functions of individuals
"ot functions of functions of individuals, etc., is a classification
too crude for the Principia reduction of mathematics to
logic, and it can be shown that the principles on which that
classification was based demand a further sub-classification of
functions of the same type or else a radical alteration in the
whole notion of propositional functions. For the paradoxes
which the first part of the theory of types was designed to
remove are all ultimately based on the employment of variables
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with indefinite fields of variation, i.e. fields so defined that
crucial cases arise in which it is impossible to say whether
a given individual belongs to the field without previously
" knowing all thé members of that field. That indefiniteness of
this kind is a consequence of permitting circular definitions

of a propositional function in terms of itself is obvious ; uE

segregation into types, while obviating this specific pos@b’ﬂi}y
of circularity, permits others of the same kind aﬁ‘c?l with
consequences as disastrous. For expressions such as@)f {¢.x),
where ¢ is a variable propositional function of;?ypé one and
f some constant propositional function of type two, define
a function ‘of individuals (therefore of\fype one), by means
of a totality of functions of an individual. Hence the field
of variation of a variable propoisi}‘io\hal function of type one
is viciously indeterminate and .Paradoxes will recur unless
functions of the same tygeéj’ié subdivided into further levels,
which may be termed mfers to distingnish them from types.
ww i gbratdbapty hH.S‘\é’béen made to define orders in the first
and second ed}tio\fis\'espectively of the Principia Mathematica.
They must be ’%y briefly sketched at this point. In the first
attempt jnddiduals are defined as things which are neither
functiohlsﬁior propositions, and mafrices as values of functions

. in which all the variables are real—e.g. ¢ (%, ¥) or f (%, ¥, 2),
ote , %, 2 are variable individuals, are firsé order matrices.

"\f fﬁFunctions obtained by quantifying first order matrices, i.e. by

converting some of the variables in such matrices into
apparent variables, are termed first order functions {of
individuals) ; second order matrices are matrices some of
whose variables are first order functions, second order functions
are derived from them by quantification, and so on, #th order
functions being defined by (mathematical) induction.

Objections to this subsidiary hierarchy can be raised on the -

score of the immense complexity thereby introduced and to
the extreme difficulty of discovering the order of specific
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propositional functions. The latter of these is the crucial
criticism arising from the fact that the principles implicit
in the notation of propositional functions according to which
functions of continually increasing complexity may be con-
structed (e.g. quantification of variables, replacement of
variables by constants, identification of various variables,
etc.) do not coincide with the simple principle for constructmg
series of matrices {and hence functions) of increasing ordbrs
An attempt is made in the second edition to remedy these
defects by systematizing the principles for cog\structmg
propositional functions ; the form of proposrc;oﬁ;ai functions
of lowest type is specified more exactly, operqtiohs which may
be applied to them in order to producef }faﬁctions of greater
complexity are restricted, and the(@efinition of matrices
is modified. Fundamentally, however, these alterations do
not save the second part of, fhe theory of types from the
criticisms made above, a’nd'.‘ ost writers have rejected it
while preserving the distiﬁc’cion witypasaulibrary org in
It was implied above\t at an alternative to the introduction
of orders would b&alteration in the conception of propositional
function ; apd there are two entirely different methods
which have'héen pursued with this purpose. Ifa propositional
function! ey regarded extensionally as a collection of the
arguzﬁents (or ordered pairs of arguments in the case of a two-
tern}ed function) which satisfy it, distinctions of order
j.between formally equivalent functions appear as differences
" merely of expression and not of meaning or reference of the
two functions ;. such a view if pursued consistently appears
to involve the identification of formally equivalent functions
and reasons have been given above for rejecting it. The
best exposition of this type of solution may be found in
Ramsey’s Foundations of Mathematics; Carnap’s thesis of
extensionality is based on similar considerations and has the

same consequences.

~
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The remaining of the two methods mentioned is to adopt
the intensional definition of propositional function given on
p. 57 above, which automatically ensures the absence from
circularity required to avoid all paradoxes which segregation
into types eliminates. For, as previously stated, the essence
of the paradoxes lies in the indeterminacy of the noticns used,
and especially in the mnotion of propositional fanctiony™
precision in the definition of the latter will eliminate’ ;t?le
paradoxes. The theory of orders in its secend form Eé;l:ipears
to be an essay towards such precision and Ch“rjgﬁfék“s Theory
of Constructive Types (see p. 135) is a more elaborate attempt
of the same kind. \Y

It will therefore be assumed in thesgeetions which follow
that, while distinctions of level q(sé;ﬁe kinds are necessary
and the hierarchy of types is lq’gtﬁ valid and useful, the
hierarchy of orders is not to. i?.}.adopted in the form chosen
in Principia Matkematim.;.’,f}‘he one term fype will be here
u%@-d@lﬂuﬂ@!@lﬂlel‘kihﬁ wf distinctions of level which may
ultimately be necc;s{axry ; and no attempt will be made to
distinguish betwgén’ orders and types.

Before prcgce:eding to a detailed examination and criticism
of the theopy; of types we must attempt to show the connection
betwem\:‘slie so-called extended infinite and the contradictions

alxiagzy mentioned..
O

Connection Between the < Extended@ Infinite * and the
Paradoxes

The use of the * extended ' infinite is equivalent to a confusion of types.
Difficulties inherent in an extended infinity or geometrical
continuum are therefore reproduced in the theory of propositional
functions and their correction tends to destroy the possibility

of adequately symbolizing, by the propositionmal calculus, of the
mathematical theory of functions.

First, the notion of the ‘ extended infinite * must be made a
little more precise. It has alrcady been shown {p. 55),
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as is indeed cbvious, that the list of pairs of numbers consisting
on the one hand of the field of variation of the argament and
on the other hand of the corresponding values of the function
can be completely enumerated only if the specific field of
variation contains only a finite number of members. And,
in general, any specific infinite 'list” of numbers can be

given only by supplying a law which will successively produce

each member. A vague description of what occurs when

the infinite is regarded as ‘actual’ is that infinite hstsgor‘:

collections are considered to be of precisely the same Jga.ture

as finite ones; and the impossibility of enumera(ing »such.

infinite lists is regarded as in some way psychological a

feature of man’s limitations in the presence of\redlity. Belief
in the reality of infinite collections shows i&ﬂ in the writings
of those who share it in two ways SN N\

{z) in certain metaphysical pseudc—proposltlons of the type

“ infinite collections are real s 38uch propositions prove to
be incapable of either verlﬁc;itmmm didproedib g gﬁﬂeafs
to be impossible either #g analyse or describe the concept of

‘ reality * involved ine ?u\ch statements.

{5 in the maner ir which the corresponding symbols
are-used in nof-metaphysical, i.e. scientific or mathematical
propositionshedpable of disproof or verification either by the
methods Of experimental science or of mathematics. In
acco@nee with what has been said above as to the deﬁmtlon
ofs an infinite list requiring a law concerning the manmer in

2\ whlch members are obtained, it always happens that symbols

' defining infinite classes are of a higher ype than those defining
finite classes. This is true whether the symbols of the
propositional calculus and Russell’s definition of the type
of a symbol are used, or any other alternative array of symbols
and symbolic conventions ; for the necessity for dividing
symbols into types is based on the need (1) for specifying
exactly the field of variation of variable symbols, and {2} for
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deﬁniné new symbols in terms of old, and therefore recurs,
either explicitly or by implication, in all systems.
Hence the effect under head (b} of a belief in the actual

“infinite is that, since infinite lists or collections are considered

to be on the same level as finite ones, the corresponding
symbols are treated as if of the same type.

We are not concerned here with that part of the use of aj‘h
belief in the actual infinite which fall under head (a) ‘abo\« e,
for these elements are in their nature unsuited for. d15cu3310n
Se, restricting attention to (5}, the above d15cusslt§l of the use
of the ‘actual infinite ’ can be concluded hyéaymg that its
effect is essentially that symbols of da_ﬁqmt types are treated
as having the same type. O

Ti this is a correct account, it iso be expected that (1) the
modern theory of functions w]ll Actually contain confusions
of type of exactly the kind whlch occur in the paradoxes given
here and {2} that Russe,]ls. theory of types, by removing this
wnmdmmawm@ﬂmé the distinction between types to
be rigidly observea‘ will accomplish too much and will
destroy the Vd\ﬁlty of some theorems in the theory of
functions shith have been accepted by mathematicians.
The dilethitia is indeed 5 more formidable one than this
forrr:m;!a}ion suggests, for the identification of different types
happéns continually in mathematics whenever formal

“\,j analogies between symbols of different lines of complexity

N\
\

are discovered; Russell's theory of types is particularly
stringent and makes the formulation of all such cases
a matter of great difficuity.

It is quite easy to show that confusions of iype
are common in the theory of functions. Dedekind’s

definition of the real number (p. 94) at once produces
examples.!

1 T follow here the argument of Weyl, Das Kontinuum, pp. 19 £,
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Contusion of Types in the Theorem of the Upper Bound

A specific and important example of confusion of tjrpes in pure mathe-
matics is here demeonstrated.

In order to simplify the account somewhat we may assume
that we are dealing with variables ¥, ¥, z, and undetermined
constants a, b, ¢, which denote rational numbers, and in
addition certain propositional functions, F(x), G(x), etc., in

which the rational nambers occur as real variables ; the fact’

that %, ¥, 2, etc., are themselves functions or mccgmp’lete

symbols of & high type in the exposition of Pnngsﬁm M athe-

matica will not affect the discussion. \

It has been seen that a real number is deﬁnéd by dividing

the rationals by a ‘ Dedekind sections ’\16, in the present
symbolism, any specific real numbex must always be defined
by some propositional functlon,‘ F(x) say, such that F has
the properties expressed by :heaﬁmgﬂ:{*éulm}aa{%l)m‘gln?- 95,
For example #? < 2 will he ‘such a function defining the real
number /2. For we have only to put in L (p. 94) the
rational numbers wh‘sh make the statement x? < 2 true and
in R the numbers\w\hmh make x? < 2 false.

Then (i) evety L is less than every R, for if a® <2 and
2 < 8%, aDaiust be less than 62 and hence a < b

(ii} coﬁtams at least one rational, viz. 1/2;

uzsl‘all the rational numbers obviously belong either to
L\r to R, since for each x, % < 2 is either true or false;

s‘“\lf the first, x belongs to L, if the second to R. Iet us call
\/ the three conditions (i), (ii), (i), taken together, C for
convenience. '

By this method of definition, there will be a (many-one)
correlation between, those functions F(x) which satisfy C and
the real numbers. Now it has been seen that, unless some
restriction is placed upon the method of formation of the



108 LOGISTIC

functions F(x), contradictions will occur, i.e. functions can
be produced which satisfy € but whose employment is self-
contradictory.! Let the functions F(x) which are used to
define the real numbers be termed functions of type one. Some
‘real numbers ’ are defined in terms of real numbers already
defined ; an important case is that of the so-called upper
bound. Given any collection of real numbers, ie, the Ijeal\
numbers defined by all those functions of type one ywhich
satisfy C, and in addition some specific D which def;r;es the
collection, the upper bound U is defined as the xreiaf ‘umber
produced by a Dedekind section (Z,, R,) such that.any rational
number x belongs to L, if and only if it belongs to the L class
of one of the F(x) which satisfies D.% It is easy to show
that such 2 bound always exists iisallz t‘ﬁe real numbers are
less than some given nmumber, . O
The number U however has béen defined by a propositional
function info which fuﬁctzo?v; F enter as variable, ie. U is
dﬁﬁiwdibyﬂ@iﬁmmh&éﬁ’tzﬁpe two. In mathematical text-
books, however, U js{treated as of exactly the same kind as
real numbers su,cf(\a‘s' 4/2 defined directly in terms of the
rationals ; thid\is an identification of types of exactly the
kind thatyRussell’'s theory of types prevents.
_ It should however be noticed that this result does not
prou{'tﬁﬁét the mathematicians procedure is incorrect (as
Wb'y\ appears to suggest by the use of ‘ vicious circle ' to
n ;\’:_de:scribe the situation) for all that has been shown is (2) the
\; " use of symbols requires some conventions as to type and {b) if
Russell's theory of types is correct the mathematician’s
construction of the upper bound is definitely incorrect. On
the other hand (¢), when specific real numbers are used, it

*eg let Flx}).=.x is less than the least integer not named in this
book (p. 98). F(x} satisfies C but is self-contradictory. '

2 In the la.nguz_tge of Principia Mathematica this can be simply
expressed: by saying that I, is the sum class of all the classes I.
corresponding to the real numbers of the particular collection considered.
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is nearly always possible to give equivalent functions of type

one to define any further real numbers {upper bounds, limits,

etc.} which may be required-—so that only the most generalized
theorems of the theory of real functions fall under this
criticism : and {d) circularity need not be ‘ vicious '—it might

be possible to invent consistent conventions of type which .
permitted circularity of certain specified kinds and in particular ~ \\
such as to permit the construction of the upper bound of a.njg’:: ““

coliection of real numbers. O
A
The Axiom of Reducibility and the Logistic Definition of
Real Number N\
AN

7

Dedekind’s definition of real number is based/omd vague geometrical
intuwitions and is therefore unsatisfac v/ but the Principia
substitute needs axioms of infinity “and reducibility whose
validity is doubtiul. i NN

LN
"

The essential defects of Dedeléﬁﬁl%ws‘%%ﬁ%ﬁlgigﬁadwf’{rgﬁﬁﬁmber
are (a) that the evidence for'the correctness of the definition
rests on geometrical i fuition of the relations between ideal
points and lines in 2 specific geometry whose selection for
this purpose Ir{ay:bé attributed either to historical reasons
or to an (ql@ged) necessary comnection between Euclidean
geometry\aéd'the relations of apprehended sense-data. Since
EHClidg@t geometry is one only of many that can now be
constriicted the evidence for the existence of real numbers
reguires to be of a nature at once more general and more
-réliable.

(/) The notion of the ‘existence of a real number’ is
vague and requires further analysis. For example, it becomes
a matter of eritical importance to determine whether, and in
what circumstances, the existence of a real number implies
more than the presence of some method for calculating its
value to any required degree of approximation.
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The truth of (a) clearly implies the truth of criticism (5,
those who would defend Dedekind’s definition—a group which
no doubt includes a great many expert pure mathematicians—
would need to reject criticism (a).

Thus it might be argued that the ‘existence of a real
number * is not synonymous with the ‘ knowledge of a
necessary and sufficient criterion ’ or even with the exisggﬁié
of a necessary and sufficient criterion for the existcﬁlzee' yof
a teal nurnber. Hence, although the Dedekmd é'[eﬁmtzon
does in fact supply a necessary and sufficien \qrﬁenon for
the existenice of some real numbers (narnely\the possibility
of separating the rationals into the classés Lvand R described
above), it would be urged that real num:bers mauy exist which
are incapable of definition. OO

There are at least two views that might be held as to what
is meant by the existence of é‘i‘éal number ;—

(1} (Realist argument) ’It mlght be urged that the Dedekind

R PR, ex]%tencg of a real number cannot be self-
c__t_)_ntradlctory : tha\t\ the presence of a sufficient and/or
necessary crite;iQH?or the extistence of a real number is not
the same aghthé existence of a real number; and that the
existence 6fall the real numbers used in mathematical analysis
is gu,asén'teed by evidence based on geometrical intuition.
'Flkis"‘a}'gument is based on the supposed identity of the symbol
ix\tsefs in two such sentences as +/2 exists and The King of

NS Eﬂglaﬂd exists, i.e. on a confusion between two senses of
)" existence, the first that in which a number can be said to exist
and the second that in which a person can be said to exist.

This view is therefore a mistaken one.

(2) {Neo-Machian standpoint), Existence of a real number
is synonymous with the presence of a necessary and sufficient
criterion. This view also requires a revision of the Dedekind
definition in order to avoid contradictions.

Thus Dedekind’s definition cannot be regarded as a final

N
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solution, This fact was clearly recognized among others by
Russell whose emendation consisted essentially in defining
the class L itself (cf. p. 94} as the real number, ie. the real
number was defined as the class of all the rational numbers
less than itk \<
This definition apparently eliminates the difficulty about.
the meaning of the ‘existence’ of a real number for i
Russell’'s own language it ‘constructs’ the reals fmmber
instead of ‘ postulating * #t. The difficulties asme};}ed with
existence reappear however almost as obstinately in the
logistic scheme in the following forms A
{1) the axiom of reducibility. k¢
{2) the axiom of infinity. AN

4
N/
LY

N

The Axlom oi Reduclhﬂlty 2

e

o“

In accordance with the logistic definition of real number
just described a real. hu\mber is vaweladbreflihramabnganbers
and an upper btamﬁi (p. 108) is a class of real numbers;
hence the uppétybound of a set of real numbers is a real
number of‘hj.g.hn;r type. Thus there must be infinitely many
different ’Pypes of real numbers.

. solution of this dilemma in Principia Mathematica is
to postulate that each propositional function of any type
Whatsoever has some propositional function of type one

\ ‘formally equivalent to it. This effectually destroys the
segregation of types without reproducing the contradictions
ag might at first be supposed. For the contradictions depend
on the smeaning of the propositional functions in question,
whereas for mathematics only the truth values of propositions
matter so that any propositional function can be replaced
by any formally equivalent propositional function.

1 Vide Russell, Tntvo. fo Math, Phil., ch. vii, for a detailed definition.
t Vide Pyincipia Mathematica, vol. i, pp. 55-60, pp. 160-7, and
12
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This principle of the existence of propositional functions
of lowest type formally equivalent to any propositional
function was termed an axiom by Russell presumably because
there appeared to be no method of proving it; but the
difficulty facing all subsequent commentators has been not
so much to decide whether it is true as to understand what
is meant by asserting the existence of propositional fun.cii&‘ls.

-~ )
The Axiom of Infinity * N\ *
N

Russell's definition of integral numbe;fis“based on the
existence of a sufficlent number of Ergpésitional tunctions
with certain properties; to put _the}nétter very crudely, if
there are only a finite number(ds" propositional functions,
only a finite number of 1'11tegg;1%~will exist. Thus an ‘axiom
of infinity ’ is required, pgétﬁl‘ating the existence of infinitely
WI{lfaﬁr‘}_&bpgggg%tégp&_lg_{fj@t’tibns.2 Here again the stubborn
difficulty is to understand what can be meant by the existence
of the _reqtirefl\"ﬁxopositional functions.

.\fA’rgumen'ts for the Axiom of Reducibility

Rusgel’y” arguments in favour are criticized but conventions are
{“\svggested which may remove some of the objections fo the axioms
~\of reducibility and infinity. .

Russell’s arguments in favour of the axiom of reducibility
in the first edition of Principia Mathematica (vol. i, pp. 55-60)

1 Principia Mathematica, *125 and vol. i, p. 183.

# It is by no means obvious that the Principia Mathematica statement
of the axiom occurring at an advanced stage in the architectonic
superimposition of definiticns does in fact reduce to an axiom of the
nature stated in the text above; but the detailed analysis required
to demonstrate this would be out of place here. It may, however, be
noticed that the P.M. form of the axiom could be simplified and that
the existence of one relation conforming to certain specified conditions
would probably be sufficient, The relation in question must be a one-one
relation whosé converse domain is strictly contained in its domain,
for a class which can be put into a one-one correlation with a subclass
of its members must have an infinity of members.
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amount to the contention that * the reason for accepting any
axiom, as for accepting any other proposition, is always largely
inductive, namely that many other propositions which are
nearly indubitable can be deduced from it, and that no
“equally plausible way is known by which these propositions
could be true if the axiom were false, and nothing which is \‘
probably false can be deduced from it . The first part 'oflt.h,e
quotation appears to be of doubtful validity since in thg{pg‘icz
of Principia Mathematica a false proposition implies every
proposition, so that all the ¢ indubitable ’ pfopos{ti ns could
very well be deduced from the axiom if it Hdp ened to be
false ; and the remainder of the quotat{on tries to justify
expediency by an appeal to the truth of {erified hypotheses.
The fundamental reasons for i.jﬁ‘ro\ducing the axiom are
clearly indicated in another staj:éfr’flent of Russell's: ““The
axiom of reducibility s introdueed in order to legitimize a great
mass of reasoning in which’,fﬁfima facie, we are concerned with
such notions as * all pfoperties of ¥ Sbrasl bt tioadn and
in which, neverthgless, it seems scarcely possible to suspect
any substantial etvor  (ibid., p. 56). Which means that the
axiom is i{lzriad'uced in order to be able to make precisely
those g'e{liral' statements involving the term aff which the
the Ty 91 types forbids. ‘
..i.&:fate the axiom as in Principia Mathematica in the form
'..\*fliét every function is equivalent, for all values of its argument,
\'\; “to some function of the lowest type is misleading, and has -
led to some unjustified criticism of the theory of types. For
the enunciation of the axiom itself appears to sin against the
theory of types by mentioning ‘all propositional functions’
and thus invites adverse criticism which seeks to establish
self-contradiction in the notion of a hicrarchy of types. This
misunderstanding is produced by the insufficient discrimina-
tion made in Principia Mathematica between those theorems

which are part of the deductive system and those which are
I
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directions for and restrictions on the use of symbols in the
deductions. The theory of types belongs to the latter class
and consists essentially of (insufficient) directions for the
unambiguous use of propositional function-symbols; it is a
device analogous to the creation in mathematics of new
symbols by the attaching of indices to a stock of symbols
insufficient by themselves to represent adequately ané\\
unambignously the relations of the field investigated. :Silqh
supplementation is necessary only when the convenfidns of
significance, ie. the rules according to whichotée”a‘symbols
may be combined, are insufficient to ensu{{’ Anambiguity
and consistency.  Of such conventions, sbthe’are necessarily
determined by the choice of symbols (visible or tangible) to
be used, others are implicit in the si}ént agreement of those
who employ the system of symbol:s'; wwhile the remainder need
to be explicitly stated. Ne,’;‘diﬁerence of principle can,
however, be found in the Jaéé';group and, in theory at least,
wiww dbraglibrary.orgin ™S v .
the need for statXng %uc]i:éanventions can always be aveided
by using new symbol§ bf a higher degree of multiplicity.
Thus, for examiple, the theory of types could be entirely
eliminated froms 'the logistic system by using instead of
marks wooder rings to represent propositional functions.
The r l;llglte conventions of significance might be of the

 follgwing nature: Functions of the same type have equal

~

'\

e A\

¥

Kﬂl‘hand the argument to any function is a ring of smaller

Sradius fitting tightly into it. The theory of types would then

be shown by the fact that no ring could fit into another of
equal or smaller radius,

On applying similar considerations to the axiom of infinity
it appears that the simplest interpretation of the latter is
to regard it as a rule for constructing as many new symbols,
as requited. Thus in the system of ring symbols described
the axiom of infinity would be replaced by an understood
convention for constructing an unending series of symbols,
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eg. by allowing rings of a certain length of radius to have
thickness, one, two, three, . . . units.! In order to be valid
in the logistic scheme the axiom of reducibility should
analogously be capable of reduction to a statement about the
manner in which symbols could be constructed in that
system, '

Axiom of Reducibility Equivalent to the Assertion of the (3

Existence of ¢ Propositional Functions \
! o\

A mathematical interTude in parenthesis to the main arg’u}‘nent.

It has thus been seen to be possible to ehﬁ\xﬁlate both a
theory of types and an axiom of inﬁlﬁt\y\fmm the logistic
scheme ; the axiom of reducibility hoWever presents more
formidable difficulties into whose analy51s we must now enter.

(1) It is not possible to transforMedﬁ 1,0f, geduc:éblhty
by choosing an appropnate.system of symbols of the requisite
multiplicity. For, just aﬁt}e function of the axiom of infinity
is to furnish an enumeﬁ*ble or countable infinite and thus to
ensure the exlstence Yof the natural numbers, so part of the
function of thé’ axmm of reducibility is to ensure a supply
of Pl‘Opomtwn functions of cardinal number ¢, ie. capable
of bein it into one-ome correlation with the parts of a
contmuum
"Thus it can be shown that if the deduction of Principia

aihsmatzca ensures the existence of all the real numbers,
it must postulate the existence of a set of predicative functions,
(ie. of type one), no two having the same extension and
sufficiently many to be put into one-one correspondence with
the points of the continuum ; or, more concisely, there must
be ¢ predicative functions with different extensions.

! This interpretation of the axjom wouid in turn be open to objectuons,
and is not intended as a final analysis of the nature of infinity.

~N

N
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For a real number is a class of rationals ; a rational is a
class of couples of cardinal numbers ; and a cardinal number
is a class of classes whose members can be put into one-one
correspondence. Hence a real number is a class of type four?
Since gll the real numbers are different by hypothesis, there
must be at least ¢ propositional functions of order four, no two
of which have the same extension. But by the axiom\\zyf
reducibility each of these functions has a predicative fulgtion
which is equivalent to it, Thus there are ¢ pli(‘%;licétive
functions with different extensions. N\

Having thus shown that the statement oi'\}he' axiom of
reducibility taken in conjunction withthé other axioms
alone implies the existence of ¢ predicative propositional
functions it is now easy to see conyersely that, without the
axiom of reducibility, it would\be impossible either (a) to
obtain the ¢ predicative fungtiéh"s by construction or {b) by
appeal to empirical fact. »

WW‘F@P’{%?IHB’W‘%?pﬁﬁDsitional functions are uged in the
Principia Maikemaqfca ;ieﬁnjtions, all the integral \numbers
and then by sch@sive-stages the rational and real numbers
being defined With the help only of the propositional function
identity Wh@f;h holds between x and y when they satisfy the
same preticative functions, All other functions must be
cogsj;x:}&ed from the primary one of identity by the use of a
ﬁﬁité: number of Jogical operations (quantification, negation,

N€tc). Thus even with the axiom of infinity all that can be
\“\  obtained is an enumerable infinity of enumerable infinities,
N/ that is, an enumerable infinity,? and (8) no empirical evidence
can be given of the existence of infinitely many different
constant propositional functions.

1 Actually, however, owing to the use of the axiom of reducibility
and to refinements in the definition, real number as defined #n Principia
Mathematica (*310.01) is of higher order, This, however, does not
affect the argument,.

* A well known result in the theory of cardinals. This leads to the
pretty paradox that even with the axiom of reducibility there will always
be propositional functions which cannot be constructed,
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Yet, the whole of the correctness of the Principia Mathe-
matica construction depends precisely upon the unverifiable
exsstence of these ¢ predicative functions. Crudely stated :
if there are fewer than ¢ predicative propositional functions
some of the numbers considered distinct by mathematicians

will really be identical!

Other Criticisms of the Axiom of Reducibility

N

{3

o/

The aitempts hitherto made to prove the axiom of redu(:lblhty‘ a
contingent proposition are fa.].lac1ons e \

W

Criticism of the axiom has usually been devoted o' its lack

of evidence, and a certain amount of work has\been done to -

investigate whether it Is a contingent pr\?positlon

Ramsey’s ! attempted proof that the a:mﬁm is contmgent
and Waismann's ? elaboration of that pj;oof are both fallacious.
The method used by them consiststin ‘making certain assump-
tions (z) concerning the number: Qi”‘ii‘i’diﬂhﬁ%ﬂ‘ﬁ‘r he HiHVerse,
(b)) concerning the nu eq: of predicative propositional
functions, and (e) the munber of predicative proposmonal
functmns which ar¢ satlsﬁed by each individual. If, in such
a universe, a nog predlcatzve propositional function can be
constructed aikd shown to be equivalent to no predicative
Pl‘Oposﬁl@{a “function, the axiom of reducibility would be
false in, tl}at domain. Tf this could be proved it is held that
the a}«uom of reducibility would be an empirical proposition.

1§ “mistake made in the proofs referred to above consisted
in” neglecting to observe the mecessary conditions which
predicative propositional functions must obey, e.g. if fisa
predicative propositional function so is ~f; if f and g are
so is i(#) = f(x).g(x) Df. Thus statements (), (5), {¢) above
must conform to these conditions. :

1 E. P. Ramsey, Foundations of Mathematics, p. 57.
‘¢ F. Waismann, ~ Die Natur des Reduzibilitatsaxiom,” Monalshefte

Jilr Mathematik wnd Physik, vol. xxxv, 1928.
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In accordance with our previous discussion, since the axiom
Postulates the existence of ¢ predicative functions of various
extensions and the number of constructive operations that
the predicative propositional functions can undergo is finite,
it would appear to be possible, in any case where there are
only enumerably many predicative propositional functions, tol ™
construct a non-predicative function which has no equivalent
predicative function. The discovery of the necessag‘y; afid
sufficient conditions for the axiom of reducibility Jsd’;b:e true
in a domain of one-valued predicative functiorrs\" however
difficult and has so far not been accomplished)

: _ N

Before concluding this part of\tlie{"investigation by a
summary of the criticism agajnsv‘.lf'rimép-iez Mathematica,
2 few sections wiil be devoted. jc;&‘;r'epoﬂmtg on improvements
of that work, The author,gfs';E)I{Sidered are {the late) F. P.

ww w . .dbrau

o e T : oy in -
Ramsey, ﬁk’\f‘?&gl}g If\te}i. Chwistek, and L. Wittgenstein,
: ~\
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F. P. Ramsey

This, and the three sections which follow, are a report on various
attempts to remedy the worst defects of Principia Mathematica.
Ramsey's principal contribution was the effort to dispense with an
axiom of reducibility by using functions defined in terms of
truth valucs with a minfmum of specific reference to symbols.

present purposcs is his attempt to eliminate the need {qr:aii
axiom of reducibility in the logistic structure. In P{m&’ps’a
- Mathematica, as previous discussion has indica§e§, “fthere is
to be found a prolonged compromise between 2 &arly realist
attitude towards classes, and a later thgm&‘*ﬁvhich regards
them as incomplete symbols and rgglu:ce‘s“ all statements
concerning their existence to the egsSé;t\lon .of specified sets
of correspondences between copstructed symbols. Either
attitude, consistently elabora;eﬁi’?fé&ldalﬁﬂﬁﬁ‘f?ﬁloﬁgéﬁtem
containing no axiom of redieibility. The second, however,
requires meticulously pr;s@ise indication of the denotation of
the term symbol. P,‘o'{‘a: system of symbols has significance
only in the procegs\of being used by persons and its meaning
is derived from %he information which those who use it intend
to express..\zé‘ﬂi such words as variable, symbol, etc., involve
mental:c@“s,‘pasitidns or states in their definition and it is the
ineradieable ambiguity and vagueness of the names for such
Stgtt’gés" which ultimately necessitates a step by step
\'Ebﬁs’tructive definition of terms like function whose reference
to them is apparently most indirect. The latter procedure
leads naturally to a theory such as that developed by Chwistek
or Weyl. Ramsey, on the other hand, in his earlier work at
least,? adopted a thoroughly realist attitude towards classes,

! Through the kindness of Mr. R. B. Braithwaite I have had access
to some unpublished work by Ramsey, written shartly before his
death, which indicates that he was developing a view of mathematics
similar to that of Brouwer.

119
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The feature of Ramsey’s work which is most important for 2
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conceiving them to exist irrespective or independently of the
possibility of their definition. His definition of Zruth functions
of propositional fumctions can be most conveniently taken in
stages. First, he says, a propositional function is a symbol
or expression {Foundations of Mathematics, p. 8). An afomic
proposition is one * which could not be analysed in terms of
other propositions and could consist of names alone without® \\
logical constants ** (loc. ¢it., p. §), and an atomic fact is the f;mt
which is expressed by such a proposition if the proposﬁwn
isa trueone. Atruth function of propositions s, in a%opda,nce
with our own definition (cf, p. 67), one whose t dth or false-
hood depends only on the truth or falsity of the propositions
which are its arguments. But Ramsey agagrts that a truth
function may have an infinite number of Arguments (loc. cit.,
P 7). A function of individuals is glt(miéc if all its valucs are
propositional functions. And the déﬁﬂition of truth functions of
profiositional  functions is "’Suppose we have functions
Wil Bibaudibidr floratin thell by saying that a truth function
¢ (£, 9) is a certain {uth function (e.g. the logical sum)
of the functions $ic &), 45 (£, 9), etc., and the propositions
$, 9, we mean that any value of ¢ (x, 3), say ¢ (a, b}, is that
truth functzon ofthe corresponding values of $,{a, b), yla, b},
etc., and, the propasitions $, ¢, ete.” (p. 38). Finally *
Pfe{lg?w 1 function of individuals is one which is any truth
fmlc\ of arguments which, whether finite or infintle in
,Qu}nber, are all either atomic functions of individuals or
\ ‘propositions ”’ (p. 39).

The range of predicative functions thus defined is claimed
to include all those occurring in Principia Mathemaiica ;
for the turning of real variables into apparent by the applica-
tion of quantifiers is conceived of as either an infinite logical
product or infinite logical sum of certain truth functions of

! This is, of course, not the sense in which predicative function is used

in Prmcapm M m}hsmanca and in thi; 1 that use
Of predicative by demon s book. Ramsey replaces
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propositiona! functions as above defined. Hence all the
propositional functions of individuals, for examﬁ]e, belong.
to the same range, and the second part of the theory of types
is unnccessary. _

The following comments may be made on the above scheme :
Ramsey says “ by a propositional function of individuals we
mean a symbol ™ (loc. cit., p. 85) and again ** functions are
symbols .1 How then can a symbol have an infinite number
of arguments ?  Yet Ramsey’s notion of predicative function/™
Is useless unless an infinite number of arguments are allowec ¥
His definition, as he himself says, is essentially de Ig?ient
on the notion of a truth-function of an infinite 'nﬁﬁer of
arguments ; ““if there could only be a fmijceayumber of
arguments our predicative functions woul;i':be simply the
elementary 2 functions of Principia” (lqb\\‘sf't., p- 39).

The only explanation possible 1a £ regard the fact
corresponding to any generai or msi:gntlal proposition (i.e. a
proposition containing 2 quanfiied Apparen: vaPlAbil) as
composed of an infinity of a.t\c)rmc facts and to regard these
atomic facts as arguments @}he general fact. Ramséy himself
makes very clear th_at’tﬁis\is his position, thus all our criticisms
of positions whichyactept the ‘actual’ infinite will apply
with maximum \gf?ect to his exposition.

xO
! The sens¢ in“which symbol is to be understocd here is that in
which * sy %q " is the determinable of which word, phrase, senlence,
ete., are déterminates.

* Le. what arc in this book called predicative functions, see footnote on
Previons “page.
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Note on the Thesis of Extensionality

A dogma of the logical positivists is examined.

~

N

Tt is instructive to compare Ramsey’s theory of extensiondi,
function with the thesis of extensionality (Extensionalitéts“-"
these) held by Carnap and others of the Austrian posifivi;ts.l
Tt is asserted, on the basis of a distinction between' ﬂ% “Sinn *
and ‘ Bedeutung ' of all symbols, that alf fun{;?ions of pro-
positional functions are extensional, i.e. th@:} any true state-
ment involving a propositional functiof @emains true when
a formally equivalent propositiona}.\fﬁhction is substituted.
The terms employed in making the distinction referred to are
ambiguous ; sometimes the a’iit’i't‘hesis of the two aspects

waPBeARL b SRR to_that between © connotation’ and
‘ denotation ’, e.g. 4 —}-,Qané 5 4 2 are said to have different
" senses {Sinn) but t,h\'é}ame meaning (Bedeutung). For our
purpose howeve‘r’it\is‘ unnecessary to analyze the distinction
in detail for,festricting our discussion to the Bedeutungeu
of propositio\nal functions, we may adopt the methods of
the logistic calculus, freat this phrase as an incomplete
mbol, and discover its import by eliminating it from the
chnitexts in which it occurs.
« Cases which seem to disprove the thesis of extensionalify
are statements such as x is @ man has seven letters which
become false when the formally equivalent function x ¢ @
featherless biped is substituted for x is @ man. The answer
made is that the statement in question is not really about the
propositional function x #s & man but about the sign by
which it is expressed, and the whole thesis hinges on the

* Cf. Carpap, Der Logische Aufbau dev Well, p. 62.
1223
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question as to when a statement is really ‘about’ a
propositional function. The answer supplied by Carnap in
Der Logische Aufbau der Welt can be disentangled as follows :—
(1) Only extensional statements are about prepositional
functions themselves.
{2) Extensional statements are about the Bedeutungen ’

of propositional functions. . \{\
(3) The Bedeutung of a propositional function is the class\
of formally equivalent functions. ¢ : )

Hence no true statement can be made ‘about} any
propositional function which is not equally trug/of every
equivalent propositional function, ie. there is no\nethod of
distinguishing formally equivalent proposlkonal functions ;
formally equivalent propositional functiczy are identical.

The same result can be obtamed\{\{t‘tlerwme, a is a pro-
positional function of one vanablq means e has an argument
place and if any x is substituted in that place a sentence is

w.dbrauli

obtained. Now the Bedeutungm dentence (in the idilative
mood} is its trath vakue so that the identity of two
propositional functiong" hmst reduce to the identity either of
the Bedeutungen or\else of the Sinne of the corresponding
sentences ; op,! (the first alternative formally equivalent
functions ar&\identical and on the second the thesis of
extensw:m;h\ty is incorrect.!

Thus\Carnap’s position reduces to the use of Ramsey’s
exteﬁslona]ly defined propositional functions and the same

% sCU}ICBmS will apply to both.

/ * It may, however, be the case, even if the thesis of cxtens;.onahty
is incorrect, that mathematics treats only of extensional statements.



H. Weyl

In sharp contrast to Ramssy, Weyl attempted to systematize the \\
principles by which symbols, especially propositional functions,
are constructed. His method is summarized and its conseque:@c’e,s
noted,

Weyl is now one of the most famous suppox:k¢1$\ of the
intuitionist philosophy of mathematics, but Jgs\Kontinuaunm,
one of his earlier works on the nature of matﬁematics, is a
very ingenious attempt to construct with o}ﬁj} a finite number
of principles of construction a contmu‘um of the real numbers
required In mathematical analysléx His results can be’
adapted to form part of the lpgzst‘ic construction of mathe-
matics, and are especially imﬁért:mt for that purpose because
novagithrsetibsduripiBtPor équivalent axiom is nsed.

Weyl was concerne&\}o remove the suspicion of wvicious
circularity attachmg\}o the mathematical theory of functions
and sought to attain this by using as propositional functions
only such symhois as can be manufactured by a finite number
of applgga?:ons to symbols already defined of the principles
descdbied” below. Since he restricted his attention to the
daﬁn\mon of real numbers in terms of the natural mumbers,

= he“began his analysis at a stage where it is assumed that

\/ ) the following symbols have already been introduced either
as undefined, or else defined by means of axdoms (p. 47},
or by definitions in use in terms of other symbols prevmusly
introduced as in the logistic scheme :

{i} The natural numbers, which are to function as
‘individuals ° in the present account.

(ii) -A few constant propositional functions which variables

from (i) can satisfy. These are certain mathematical relations
124
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such as is grealer than, is the Pproduct of, etc., and identify
(symbolized as a relation),

(i} The logical operations of comjunction, negation, and
disjunction, together with quantification, the latter fo apply only
to variable natural numbers. )

- {iv) The following two operations which derive propositional
functions having a smaller number of arguments than the\
functions from which they are derived: (a) the 1denuﬁca~
tion of variables, as when the function of two arggments
R{x, ¥) becomes the function of one argument R(x 1, (b
the substitution of constants for vanablesk 325 when the
function of three arguments S{x, ¥, z) becomgs”the function
of two argnments S(x, y, a). Only natufﬁ“humbers may be_
substituted in (5). O '

(v} As in the logistic scheme,Q classes may be defined as
incomplete symbols with the isual properties ; to every
function F(x) there corresponds a class aul[brtal.llgr expressions
@ has the property F, F(a), ot @ belongs to the class F have the
same mcaning ; two- ‘fu}lcuons F(x), F'(x) define the same
class when and duly" Wwhen every object which satisfies F(x)
also satisfies F{{%) and vice versa. Similarly ‘ two dimensional
sets’, i.e. :Gl’gsée“s of .ordered couples, are defined.

(vi) Fhctions can be formed with these new categories of
objedtewA{classes, etc.) as variables; hence every function
st}b indicate the category to which its variable belongs.

) So far what has been defined is a ‘ restricted " calculus of

Propositional functions. Next follow some special principles
for constructing nmew symbols which are easiest to explain
by exemplification.

(vil) R{uv/xyz) is a2 propositional function with five
arguments of the same category, where %, ¥, z are distinguished
from the rest by being placed to the right of the stroke and
are called free variables while #, v are called dependent
variables. Then for any given values 4, 6, ¢, of %, %, %, there

~
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is a two-dimensional set consisting of the pairs of values of
u and v which satisfy R{uv/abc). This set, ¢,y say, is a variable
- class depending on the choice of 4, b, ¢ and is infroduced to take
the place of the mathematical function.! For example, suppose
R{wv/x)isu — v = x, all the variables being positive integers ;
the principle allows the formation of a derived function, 4 {x)
say, which correlates to each positive integer x the class of, \\*
(viii) A principle of extended substitution : variable class%s,
as defined in (vii) may be substituted for variables of apggq?fiéte

pairs of positive integers whose difference is x.

categories to form new functions, e.g. from two Rrgqﬁssitional
funetions R{wv/xvz), S{zwl} where all the le't\pei"s except
R and S are variable and U is of the categorgniass of ordered
couples, we can successively form ¢, frofid .(as in {vii), and
then S{x, w, ¢,,,,.), a function of fom"argﬁments.
(ix) A principle of itcration; first in a narrow form and
- immedijately extended; let E{x};;y;?{ ) be a propositional
“Rinedbreghsr e ﬁ'énvaﬂaﬁiel class of couples of entities of
same category as x and ), h Forming the class ¢{x} as before,
and using (viii), thelfinction Ry(xx'/X) — R{xw'/(x)) is
obtained. &\
Similarly we €an proceed to define
NER (ex /X) = Ry (e /()
And, if)géneral, for any v
AN Ry (/X)) = Ry (a0/ (%)

The \principle of substitution in its narrower form allows

m:"gl} Ry, Ry, .. . 10 be regarded as propositional functions
\/ arising from a single function
Rin; xx'[X)

by giving the variable natural number # the values 1, 2, 3,
etc. And in all such cases the principle permits the
introduction of the function R{n ; #x'/X); thus, while (viii)
allows the suppression of one of the arguments in a function,

1 ¢ is, in fact, a descriptive function of the kind defined in Principia.
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the principle of iteration permits, in special cases, the forma-
tion of functions with an additional argument ; it does the
work, In this system, of the principle which permits the
quantification of variable functions in the extended calculus
of propositional functions.

The extensions of the principle are (4) that it may be
simultaneously applied to several propositional functions,

N

N

e.g. starting from R{xx’/XY), S(y/XY} where x, »', ¥ arE::..;x

variable individuals, ¥ a variable class of individuals, and’

X a variable class of couples of individuals, we obta&"fhe
classes $(XY) and $(XY) by (viii), and hence.dwo new
functions R(n;xx’/XY) and S ;xx'/XY) can b defined
by the egunations \\“ '

R(1; xx'/XY) = R{xa’ /X Y) e\

R(n + 152" /XY) = R ; %' /XYY, (X Y))

S(t;y/XY) =S(y/XY) 8%

Sl + 15 9/XY) = Sla; y@XY) JXV)

SO Swrww dbraulibrary org.in

. {B} The class which is gubstituted is permitted to be a
different one at each stagp'\:s\uch a class would be appropriately
symbolized as ¢(X, #)say ; the final form of the principle
then states that ffom a function R(xx'/X) we can form a
new function R¥{s%x’/X») by means of the equations

R¥(xw’/KY) = R(x#'/X)

R*G2YX, -+ 1) = R*(xx'/ (X, # + 1), )

\Yit};‘}he help of these principles Weyl is able to construct
&ﬂét 'of real numbers and a corresponding set of points which
Ssess many of the properties of the Dedekind continuum.

These points are  everywhere dense’ on the line, that is
every interval of the line, no matter how small, contains
infinitely many of them ; also Cauchy’s principle of con-
vergence is satisfied! This permits the development of the

! The form in which the principle is expressed for this purpose is:
A sequence f{n) is said to converge if for each fraction « there is some
Tﬂiber dN , such that for all integers p, ¢ = N, f{p)—flg) lies between

and —I., .
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theory of differentiation and integration and the introduction
of all specific functions such as the trigonometrical, the
exponential, etc., used in the early stages of mathematical
analysis. It furnishes, however, no support for the muore
generalized theory of integration developed by Lebesgue
and subsequent workers; for the * continuum ’ thus deﬁne{i
has many gaps. From the point ot view of the pure ma&%
matician who accepts the Dedekind continuum, the pmnts
undefined by Weyl's procedure are themselves e\xe‘ryv\here
dense. In particular the two following theorc@ o not hold
in Weyl’s continuum ! : \~

(i} Dedekind contmmty a Dedekind%ection of Weyl
points need not necessarily define a Weyl point.

(i) Theorem of the upper boug&\ a bounded set of Weyl
real numbers need have nelthér “the upper nor the lower
bound. K N

S

WO d\@ﬁahﬂ}ﬁﬁrﬁ}rgblgrlrph‘ebmms containing existential statements

concerning real ~Whrch are not explicitly defined by conv: erging
sequences,
\\
Ol



L. Wittgenstein

An [unauthorized) report of some of his views on pure mathematics, .
which constitute, by implication and explicitly, a thorough repudia- g \\
tion of the logistic thesis. ' Ny

P
W)
o -

Dr. Wittgenstein's famous Traciatus Logéco—Pkilosophjquiv}
has had a profound influence upon the logistic views;@&ﬁe
nature of mathematics ; in particular the Austrian positivists
(the so-called Viennese school 1) profess to derive thels ‘doctrines
from him. But the epigrammatic style of ;h‘{al"@vork makes
it extremely difficult for the reader tmkue‘\gufe that he has
fully understood the important doctrﬁlés: which are there
expounded. The following report i)s.;csaf'fﬁ'ned to those portions
of the Traciatws which have d‘%’gfé kglaglllrll on the nature

) . TAry . O0rgin
of mathematics and, in view Qf the apology contained in the
preceding sentence, muspﬁxﬁ} be regarded as a substitute for
first-hand acquaintarieéswith Dr. Wittgenstein’s work ; the
numbers in parenthéses always refer to the correspendingly
numbered paragsdphs in the Tractaus from which quotations
are made,  7»" '

Part o}Sﬂfe originality of the Traciatus derives from its
conceyi’;\zith questions of the logical structure of language,
i.&f"ﬁéith logical grammar. The answers to these questions
m/the Tractatus are of tremendous importance to any
discussion of the nature of mathematics. For it is urged that
many confusions in philosophy (and presumably in practical
affairs) are due to imperfections in, and misapprehension of,
the nature of language ; and, further, the indication of how
certain specific confusions are to be corrected leads to a

! For a gencral account of this school, see Dis Wissenschaftliche

Weltauffassung. Der Wisner Krels, 1920
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conception of the integral number and of arithmetic radically
different from those of Principia Mathematica. '

The term language in this connection can be used in an
extended sense to include any set of symbols used in recurrent
combinations for communication between persons; and all
such languages are constructed of elements, ie. any features
such as sounds, marks, etc., which can affect the scnse\}md
gan combine in various ways to form complex qv@nbols

There are two important aspects of the structure ‘of language
to be noted : the presence of structure is par‘Qs.lly manifested
by the existence of explicitly formulated. Iar implied rules of
syntax, permitting the insertion of symbols of a certain
kind in any specified context and\ibrblddmg the insertion
of symbols of any other kJnsL 4 such rules are broken
nonsense results. It is possﬂﬂ.e {o define sdentity of structure
or equality of multaphcuy between two sentences in terms of

wihediacipgesal g)gg@l;}})ty “of substituting corresponding terms

without making monSense.! Differcnces and equality of
multiplicities aré\}namfested by special symbolic devices,
which mdude\{}w employment of indegral nwmbers as indices;
and this i¢ the second aspect of structure referred to above.
MistaKes made with regard to the multiplicity of sentences
can’ %&Yd to the construction of nonsensical statements; in
éarﬂcular numbers must not be regarded as elements in
the same sense as words, nor must arithmetical equations
be confused with ordinary sentences. The basis of the
distinction between the two is the very sharp distinction
drawn by Dr. Wittgenstein between what can be ‘said’
Le. expressed in an ideal language in which all differences
of multiplicity are visibly manifested, and what cannot be
thus expressed but must be ‘ shown '. What can be expressed
are certain states of affairs or facts, ie. the existence of
configurations of mutually interlocking objects which may of

1 See p. 24 for a detailed account of the structure of language.
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may not occur in the world. A sentence has the same multi-
plicity as the fact to which it corresponds if the statement
it makes is a true one*; and what cannot be expressed is
what the propesition and the fact {or the proposition and
another propesition of equal multiplicity) have in common.
If a statement is made asserting the existence of a certain .
configuration of objects it may be the case either that the \\
cenfiguration does as a matter of fact occur (and the state-;" )
ment is then true) or it may be the case that the conﬁguratiéﬁ?
in question does not occur (and the statement is then fa’Lse)—
bath alternatives are possible ; but an anthmetlcal\eq:.w.tlon
presents no such alternatives, expresses no stgtenef affairs,
If it is granted that mathematical state.Qqcnts are not
a species of statement but different in kifd“questions as to
the status of the former are best ansWered by returning to
the distinction between ° saying ’_ aJ;ld showing . In the
ordinary scnses of these words it} must appear paradomcal to
WA braulibrar orgIn
assert the impossibility of Statmg what two g‘r()ti‘f)s & equal
numbers of members have\n tommon ; for the cbvious answer
Is to name the commoh number. This apparent refutation
ignores however the difference between two distinct usages
of words, namgly’?rimarﬂy to refer to objects which are not
‘words and agaih, in a very necessary subsidiary usage, to
refer to, €ymmbols themselves; the habitual use of arabic
numerg E\(second usage) as abbreviations for roman numerals
or, s\eilés of strokes (first usage) obscures this distinction. As
'a‘n; Hlustration we may consider the attempt to express what
\three groups of four days, four weeks, and four points of the
compass have in common ; the word four nsed in saying that
they are cach groups of four can be understoed only by
knowing that four or 4 is an abbreviation for || | |. Thus
the symbol four functions by drawing attention to the symbol

1 Mult1phc1ty of facts has not been defined, but it should be sufficiently
clear how thisis to be accomplished, by ana.logy with the multiplicity
of sentences {p- 33).
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[ 1] which in turn skows what there is in common between

the three groups ; the attempted expression tells us nothing

and its function is at most to draw attention to the multiplicity
by using symbols in which the latter is shown more obvicusly.
Hence symbols such as | | | | differ completely from symbols
such as red ; it is the meaning of the latter but the shape oj
the former which is important; and the mannper in which
a statement such as A and B have 4 members functions(diﬂ,ers
entirely from that of statements expressing states & )atfairs.
The conclusion deduced from these argumentxi‘:f that the
‘nataral numbers are indices, i.e. parts of\symbols, which
serve to make explicit the multiplicity Gf symbols of which
they form part. It should be added’lqgwever that Dr. Witt-
genstein nowhere in the Tractaius, 'ekplains how knowledge
is conveyed by ‘showing’; nor‘ do other writers, while
acknowledging the unportanee: of the distinctions he makes,
accept the unphcatmn thﬂt they preclude the possibility of

W\“é’f’rfyglau“ ol O{l%a{lment of the natural numbers in the

£\

N

\‘;

form of a ‘ language.s To instance two very different points
of view, Carnap'®regards the exhibition of structure as the

_ only functiqn' language (so that nothing can be 'said’)

while Chmstek % uses the conception of a hierarchy of languages
each c\oustltutmg the subject-matter of the next.

Dl‘ Wittgenstein is not concerned in the Tractatus with the
{%N:e of pure mathematics, and though it is clear that his
» "conception of the nature of integers is incompatible with the
method pursued in Principia Mathematica he does not pursue
the analysis of pure mathematics beyond the elementary
equations of arithmetic. An account of his analysis of such
an equation as 2 4 2 = 4 will indicate where his theary

y LD physikalische Sprache als Universalsprache,” Erhenntuis, 1933.
L Chwistele, W. Hetper, and} Herzherg, ** Les Fondements de Ia
métama.thémathue rationelle,” C, R. M. des séances de la Classe

des Sc, Math, et Nat., Acade Lettres,
‘December, 1932, mie Polonaise des Sciences et das
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needs supplementation and the difficulties which face such
supplementation. _

Integers are defined in the 7ractatus as the indices of an
operation—a definition narrower than that given above.
Amn operation is that which must happen to a proposition in

order to make another out of it, and so negation, implication, “
etc., are examples (5.23). An operation is distinguished from A\
a truth function: ‘' the occurrence of an operation does nqt::“'jz

characterize the sense of a proposition. For an 0perati6n3‘
does not assert anything ; only its result does and this de{iénds
on the bases of the operation (operation and flmcﬁ{m must
not be confused with one another) *” {5.25)—but this'distinction
does not seem to be absolutely necessary. Ahe' index of an’
operation is part of the symbol of an op\rz{tibn whose altera-
tion changes the operation into a new on‘e Thus, if ~$ is
written N and ~ (~ ) as N'p and 1 -¢ (~ (~ p))as N'p, etc.,
the strokes in N7p ConSt‘tuteuﬂ;’r\yWﬁeﬁhthWy fa,‘lét]gﬂar
operation is then chosen for the specific definition of itegers.
Omitting unnecessary co@phcatwns, the definition {in the
Present notation) redLQBs to
Nop'=p Df. -
\ONN*p = N*+1p  Df. (b)
This is the)ystal definition by induction and thus contains
no novel\lﬁmcnts With regard to this definition it may be
noted s ﬂ}at all atterpt is abandoned to deduse the principle
of mductxon as attempted in Principia; this is undoubtedly
\he ‘correct procedure, and all attempts to prove a principle
of induction are involved in a vicious circle.! But this is a
point of view which is not universally accepted ; its acceptance
entails the rejection of all atternpts to deduce arithmetic
from logic, for the relations of arithmetical equations to logical
tautologies is not that of conclusions to premisses; rather
are both to be regarded as exhibiting {from diverse standpoints)
1 Cf. H, Poincaré (quotation, p. 177).
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aspects of the structures of all systems.! The view of the
nature of pure mathematics inspired by the Tractatus may
perhaps be not altogether inadequately expressed by saying
that pure mathematics is the syntax of all possible systems
of symbols.

1 This view of mathematics iz supported by the difficuliy of supplying\\
vigid proofs of even the most clementary theorems of algebra, ség.
¥ X y = ¥ X ¥. Oneof the latest such attempts, E. Landau, Grundiages
dey Analysis, 1929, uses a system of axioms invented by Peano b the
account is written in the usual mathematico-realist manner—inMwétion,
and the ideas of existence and collection are used fraely/“aitempts
to symbolize his proofs completely soon prove that a syst.eﬂﬁ f algebraic
theorems based on arithmetical axioms uses a non-{a{nia technigue.
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L. Chwistek

Arother attempt, which should be compared with the section on Weyl
above, to obtain a definition of types of functions in terms of
the principles used in their construction. \\

Chwistek's work has been devoted to rebuilding Prineé‘ﬁz’au“x
Mathematica; this is necessary, first because careful exafm{ﬁa-
tion of the symbolic conventions used in Principia shows their
vagueness and in some cases inconsistency; and secondly
because as we have seen, the axioms of infinity gnd reducihility
are unmistakably defects in a scheme which purports to
contain only propositions belonging gc} pﬁre logic.

After a very careful and detaile;d‘gxﬁinination of the respects
in which Principia falls short of aymbolic perfection, Chwistek
proceeds to elaborate a systé)h’\ﬁﬁé”sedléﬁ?ﬁléhfﬁﬂﬁ%jﬂated
more explicitly but wheé¢ approach to each specific problem
agrees fundamental {imth those of Russell and Whitehead.
The chief novelﬁieé are {i) only a finite number of different

- symbols are us.\ed‘m the system and these are all cnumerated,
(ii) differenf.kinds of symbols are described by means of a
long sefies” of * directives’. The latter are (non-formal)
PIOQOQS.\i‘tions expressed in words, some of which divide the

jni%i‘él stock of symbols by specific enumeration into a finite

<\‘..nﬁ}nber of kinds (which may still be. called propositions,
individuals, functions, etc.), and others are rules which permit
of the construction of new symbals by the use of the togical
operations and at the same time state what kinds of symbaols
are gencrated by the results of these operations.

The most important of the definitions by induction contained
in the directives are the explicit definitions of *“ being of the
same type : '

I35
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(iii} Ambignities in the Principia definition of the scope of
classes are pointed out and corrected ; no distinction is made
between classes and functions.

(ivy All verbal directions are included in the directives, so
that all the procfs are conducted strictly in symbols. This
is not possible in Principia which needs to use words in some
of its proofs.? A\

(v) Metaphysical assnmptions are banished from i-.hpzégfstem
wherever possible ; thus sndividual, function, clq.s%:,}f}r;rge are
all terms devoid of metaphysical signiﬁcaqc{’:}nd defined
merely for convenience of use in a given s;Qétcm of symbols.
The individual symbols of ChwisteK's\vsystem arc any
stmple symbols arbitrarily chosen smapd symbols of higher
type can be recognized by thfe\fa;ct"that they are complex
constructs containing symbols@f¥ower type as parts.

(vi) Many of the definitiony :;:aopted in Principia for their
w@&%gﬁgﬁ&p&py@y }Iﬁte’r‘est can be restricted to serve the
special purpose of dgcdﬁéing mathematics from logic.  Thus
to take one inst Iée, the Leibnizian definition of identity is
rejected by C' W\ié;tek, for he needs to use identity only between
classes. Bhe definition is such that two classes are identical
if every{l‘{ing which is a member of one is also a member of
the othet.

{({¥li) When quantifiers are applied to variable functions,

(the functions referred to include the quantifying symbol

and must be of a definite type, which is shown by writing one
symbol of the same type as a suffix to the quantifier;
expressions occur of the type (4) g which is read “for all ¢ of
the same type as 6 (£) . . .”

Finally, the axioms of infinity and reducibility are regarded
as existential hypotheses which do not belong to pure logic.

! Cf. the Principia definition of the existential quantifier : (Ex) fiz) =
~ (8} ~ flz}, with Chwistek's E{s) = ~ (¥) ~. The former involves

understanding the meaning of f(x) (= *‘any expression corntaining
% "}, whereas the latter is a gennine definition in terms of symbols.
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So far we have been describing the theory of constructive
types. - It is-essentially the system of Principia Mathematica
minus all existential propositions, its definitions improved,
and its inconsistencies eliminated. No symbols occur . or
need to be referred to which cannot be obtained by a finite
number of operations on a set of initial symbols. This is
therefore a kind of logical machine for expressing mathematical . L
theorems in correct symbolism. This system will not suffice A
to prove more than, e.g., Weyl's can accomplish. " K4

Lately, however, Dr, Cﬁﬁristek has elaborated a system of
semantics,! ie. a symbolic system in which prgpoéitibns
about symbols occur and are themselves symbolizéa,‘. “In this
system the axiom of infinity is replaced by t\he. pdssibﬂity of
comstructing new symbols and it becomes Rlssible to extend
the symbolic technique to include thei’ whole of mathematical
analysis and the theory of sets of poifits.® _

Dr. Chwistek’s work is undg}(i\gt‘g%lgr i ?blr_%?‘iﬁog:_hQroug_h- '
attempt to remedy the techmical defects of Prmctpmgj?atke-
matica and the best symelic system for the logically correct
expression of mathema\i:ip\.al theorems ; as such it has thrown
considerable light % the function of such mathematical
hypotheses ag Zefj;n’e]o’s and the hypothesis of the continuum.

In admirin r-:t;h\e’monument_al scale and admirable attention
to detailoefiDr. Chwistek’s work, however, the reader often
feels tie, esire for some discussion of the philosaphic implica~
tic“)\rfsf30f his work and its bearing upon the underlying
“‘afssﬁmptions of the logistic theories. Such an account, which
ferhaps only Dr. Chwistek himself could furnish, would put
his extremely technical discoveries in the philosophic setting

their importance undoubtedly deserves.

1 See fn., p. 132, ) ,

2 The a.leprljl numbers, hawever, cannot be defined. CL Chistel :
“Unc méthods métamathématique d'analyse,” Comples rendus du
Premier Congrds des Mathémaliviens des Pays Slaves, Warsaw, 192?'
11 est sir qu'il n'y aura pas des alephs, comme il ne peut y avox
des ensembles non dénombrables.”
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‘This concludes my account of the logistic theory of Principia
Mathematica and some of the proposed improvements in that
system. It remains only to summarize what appear to be the
most important criticisms and to attempt to formulate some

conclusions.

R
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Conclusions

The arguments against the logistic system of Principia Mathematica
are summarized and a scheme of reconstruction outlined.

The reader who has followed the detailed investigation qf\\
the logistic thesis in the preceding pages will be in a posjtig:nw

to criticize the attitude of mind and method of appt ch
that have inspired our comments, For it willaipt have
escaped his attention that our concern has 'l@e‘n primarily
with questions of correct symbolization ; "ahdw indeed the
broad generalization, which emerges fri’o\r‘n\ia. detailed study
of the respect in which the logistic programme falls short of
accomplishment, is that these imﬁaia’fféctions can be traced
back to insufficiently precise"{”?%%’{ﬁ‘élil{ﬁa"ﬁiﬂﬁﬁﬂﬂating
systems of symbols. Paraddxical though it may appeat to
accuse a system as comiplex and meticulous in constraction
as Principia Mathematica of lack of precision, the preceding
sections have s];m:,wﬁ the inadequacies in the motion of
PTOPOSitiona}{u’nci:ions, variable, the theory of types, and
analysis jt§elf; all of fundamental jmportance ; in fact the
elabora,ti§wof Principia Mathematica is a by-product of the
att.em‘ﬁt to demonstrate rigorously theorems often verifiable
Qﬁt"h ‘the help of less complicated symbols, and is not primarily
an instrument for analyzing the notions involved.

In view of the knowledge we have now obtained, a critical
appraisal cannot be made inside the bounds set by a logistic
philosophy and, to be complete, would involve far-reaching
reconstruction of the general method and Weltanschauung of
the system. Such a programme would have both destructive
and constructive aspects : the preceding sections have perhaps

139
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laid more than sufficient emphasis on the former in pointing
out the specific deficiencies of the logistic method as hitherto
practised. Such positive suggestions for reform as it has
been possible to make have not been organized into a system
and the completion of that rather formidable task must be
left for another occasion. A constructive attempt of tnl‘; ~
kind would need to be preceded by a study of the loglcaﬁ\
structure of language, and take account of the technmal
researches not only of Russell and Whitehead, valua‘blﬂ as
they are, but also of such Wwriters as Pelrce \f{ype -token
ambiguity, etc.), Wittgenstein (multiplicity, honsense, etc.),
Chwistek (constructive types), Brouwer (reconstructlons of
theories involving the continuum, etc.g\\Bcrna.ys {Entschei-
‘dungsproblem, etc.), Hilbert (axmm@tm approach, distinction
between sciences and meta- sc1ences) These writers have
provided the foundations c’;fjfd’.‘s'ophisticated technigue for
W&lﬁ%ﬁ%@%m@?’hiﬁ would go far to remove the
defects of Principia Mathematica.

Some indication'of’;ﬁle modifications in that work produced
by such an app&ﬁéh can be given by formulating in brief
the arguments against the propositional calculus. These
constituta, forify a part of the specific defects which would
have fo)ybe considered in reconstructing Principia Mathe-
m‘h@a}; for the weightiest arguments against that work

(s}1d the logistic opinions in general) fall into two classes :—
)" (i) Objections to the definitions of natural number.

\V (ii} Objections to the effect that the logistic approach does
not clarify the notions of infinity and the continuum,

The criticisms under the first head amount to .—

(#) A charge of circularity.

(%) A charge of confusing philosophic and systematic logic,

With regard to these it must be said that the Principia
notion of * primitive principles’ is now quite discredited ;
for if one is allowed to interpret the marks in the propositional
calculus as principles which may be applied to deduce new
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formule, the notions of the independence of axioms, or of
the possibility of deducing one formula from another, break .
down and cannot be clearly defined. It has already been seen
that a great many more primitive notions are used in the
propositional calculus than are enumerated in Principia
Mathematica, e.g. rules of significance determining which com-
binations of symbols are to be significant in the system,! and it
is impossible to limit the number of non-formal concepts
and principles actually used. Again, it was not sufficient)
for Russell and Whitchead to show that their thgf)céms
followed from their axioms, especially if Theanl;;t]ﬁ.od of
Principia Mathematica is not pursued for the sake ‘of proving
m X n =# X m but in order to analyse fhenature of the
entities involved, to exhibit their relgfiq\}é in an orderly
manner,’”’ 2 for it has been shown not‘os;llfr’that contradictions
may occur in such systems but chit such contradictions do
occur in the system discussed ’anaztﬁe presence of one contra-
diction invalidates all prooist’é}"r%i}”é‘%g'gigllﬁi?ra‘ﬁéf(&iRusseﬂ
and Whitehead should l}avé a.:ttempted to show the consistency
of the propositional pa’lx&}lus which would in turn have thrown
more light on * $ile. Rature of the entities involved . This
is 2 demand, kowever, incompatible with an attitude which
believes thatéstlected axioms are obviously true and for that
reason ..gé:}rﬁot lead to contradictions, and its justness is the -
refu.@idn of that attitude. -
O f’fhese arguments sufficiently prove, in the present writer’s
m:“}:c}iinion, that the Principia account of the propositional
\/ calculus is unsatisfactory, and that the correct view of such
systems requires a sharp distinction (in all subjects) between
the philosophic and the systematic aspects.’

! These are as important as axioms, for if combinationa like
{~~ ¥ ~) were allowed, contradictions could easily be deduced.

S Modern Introduction io Logic, by L. S. Stebbing, p. 177,

5 Cf. Carnap’s two languages, in ' Die Physika.lischeHSprache als
Universalsprache der Wissenschaft,” Erkenntnis, Band ii, Heft »
and also the formalist distinction between athematics and meta-
mathematics (p. 149). :
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The first of these is non-formal, concentrates upon the
" subject-matter of which the system (language, branch of
knowledge, science) treats, and advances by intuitive insight
into a recognition of the nature of phenomena ; the latter,
presented with a number of symbols, proceeds to assort them
systematically, using the symbols themselves as the subject:
matter of its investigation. The systematic aspect of 2 subjeét
is the same as the mathematical deduction of the theorems
of that subject.

To these two aspects correspond two dv‘»t{@:’c uses of
symbels, as words with meaning, and as Q;bstamte signs 1
respectively, words being instruments for thinking about the
meanings they express, substitute slgns@eanb for not thinking
about the meanings they symb()h{? £ ¥ this view is adopted
the resulting expositicn of the propoatlonal calculus iIs very
different from that of Prm.cz}‘zw Mathematica, No attempt
\stn\'lﬂa };)u %1} aslgbr(ngl formy]‘a& prlmltwe ’, though the relations
between the formulae ofthe system might be shown, in part,
by choosing a:bltr%&ly a set of them for ‘axioms’ in order
to investigate how the rest are then connected with them.
In the case o.f the prop051t1ona1 calculus, however, the mutual
mterrelatlonships of the formule can be exhibited much
more, s{early by giving a simple criterion for determining by
inspection which formule belong to the system and which
Jare'excluded from it.3

N 3% These modifications involve, when pursued consequentlally, '
N\ the surrender of the entire logistic notion of *deducing’
- mathematics from logic, but there are compensations. The
argument of circolarity against the definitions of natural

i The terminclogy derives from Stout, ™ Thou ht and Langnage,’”’
Mind, 1891. B guags

* The matter is, in reality, of course, far more complicated than this
ascount suggests, eg thought is always ahcad of adequate
symbolization.

# In technical terminclogy, the Ewmtscheidungsproblom has been
completely sclved for the propositional calculus. .Cf, Hilbert and
Ackerman, Grundriige dev Theoretischen Logik.
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number become harmless, for some kind of formal deduction
of the properties of integers Is desirable in order to deduce
the more complicated theorems concerning them, and it is
little more than a matter of convenisnce whether the natural
numbers themsclves are taken as given or the propesitional
calculus is drawn apon for constructs with the same formal
properties.

The modifications required to deal with the difficulties A

associated with the continuum are more radical, for its'i!% “

with the introduction of the concepts of infinity an;l};t}i'é
continuum which distinguish the subject-matter ,@f}\vh&t
is conventionally known as pure mathematics rom  the
mathematical method in general, that the'{ogist’ic system
has its most serious breakdown. As we have‘s\:gn the logistic
philosophers are faced with a dilemma }i)(?tin}een contradictions
based on confusion of types or orders and a theory of types
?vhich res?lvcs th_e mntra.dicti(.m‘s;Y gzz\}}a E)ga 3?%}%}%}%% gf unct ions
Into a series of hicrarchies whichymake it impossible to prove
many of the results nccded’\in pﬁre mathematics. This is an
ancient difficulty and g.;’tj}i*nda.mental one, arising from the
fact that a continuunibof clements can never be specified by
the cnumeration‘of. je’lements, even though that enumcration
be indefinitely Profonged.

It has beer(geen that Dedekind’s appeal to common agree-
ment Wi&s”r’égard to geometrical intuition is unsatisfactory ;
but the "Principia appeal to an axiom of reducibility as a
ésg:a;\:ex machina is even more so. For Dedekind appealed

‘common sense to accept the existence of points in specified
contexts, and the appeal is at least intelligible ;: but the
axiom of reducibility asserts the existence of proposifional
{‘umtﬁmas, and the existence of a symbol in the sense required
1s a notion too vague to appeal to common sense.! The

* Existence is never defined in Principia (the existence of

a propositional function must not be confused with that o 1
though both are represented by similar symbols). T class

~
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solution may be that anything said concerning the existence
of a function must be interpreted as a metamathematical
statement to the effect that the addition of a new symbol
to the system will not produce contradiction; but awy
solution must involve the rejection of the naive conception
of propositional functions existing in their own right.

Russell once said,! “ the very close relationship of logir?\<
and mathematics has become obvious to every illstrigc‘ée(j
student. The proof of this identity is, of course, a {uiatter
of detail ; starting with premisses which would be dnwersally
admitted to belong to logic and arriving by\d\ludlon at
results which obviously belong to mathemédics, we find that
there is no point at which a sharp ]jne,{c@n be drawn with
logic to the left and mathematics to, jhe right. If there are
still those who do not admit the ig}e}nt:ity of logic and mathe-
matics we may challenge them i:o”i‘ndicate at what point, in
the successwe deﬁmtmns and ‘deductions of Principia Mathe-
mamca, %ely conbider thats Ioglc ends and mathematics begins. It
will then be obvious theany answer must be quite arbitrary.”

We may take upihe challenge and reply that the placc where
the boundaryslin® is to be drawn is outside Principia Mathe-
matica. The relation between mathematics and logic is neither
1dent1ty\n.or that of conclusions to premisses, but consists in
the faet”"that mathematics must be used in the systematic
da;;hopment of logic (as of all organized systems); and
t}ie similarities between logic and mathematics spring from
the fact that the first, in its  philosophic ' aspect, is the
syntax of possible states of affairs, while the second is the
syntax of all organized systems.

We conclude that the logistic thesis is not proven, and that
elaborate reconstruction can save the technical achievements

of the logistic method only at the expense of that method’s
ambitions,

v Imtroduction fo Mathematical Philosophy, p. 194.
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SECTION II: FORMALISM

Pure mathematics as the science of the formal structure of symbols. ,

SN

THis section is intended to outline a type of mathemticzd: )
philosophy usually termed the formalist. The populafxty
which these opinions have acquired coincides with 3 ggneral
movement in the natural sciences towards greater qbgﬁractness
of formulation, accompanied certainly by increasingexactitude
in the empirical verification of theory but aliswby apparently
increasing umintelligibility of the conz;‘epts “ased. This can
be attributed to the use of the mathernatlcal method and 2
consequent change of attitude, among scientists, notably
among physicists, towards th&‘%‘ﬁ]“é&?@f’ﬂ*@lf‘iﬁ@éﬂightwns ;
modern physical theories terid neither to explain the universe
nor to describe it, a:r;gk\nstead increasingly to exhibit its
structure by theq@se’ of mutually dependent symbols,
unintelligible and’meaningless except in specified juxtaposition
to other symbéls: This transition towards increasing concern
with structure, towards increasingly formal character of the
concepts. iised, appears to be connected with the increasing
accm"& of the sciences in which it occurs; it is asserted
that "different observers can agree or disagree only with
\ respect to the structure and not with regard to the content
of their beliefs, and that universality of application and
verification of scientific results goes hand in hand with the
construction of a formal language to express its results.t
But it is a mistake to imagine therefore that a scientific
system loses meaning in proportion as it becormes formalized ;

1 For a defence of an extremely formalist vlew of language and
science vide R. Carnap, “ Die physikalische Sprache,’ ' Evkenninis, 1932,

147
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its symbols still have " meaning ' in conjunction, in a more
complex sense of the word, and it is the attempt to attach
associations to individual symbols apart from context that
creates the false impression that such systems are mysterious,
unintelligible, or meaningless.

If, however, it must be maintained that, however httle«
distinct ideas attach to the individual symbols of physu:s th}s
stafements of physics still have reference to the woﬂd~ ‘of
experience, are capable of verification, have meanmg \similar
considerations applied to pure mathematics seem p@(&&omeaﬂy
to rob even the theorems of that science of ahy ‘determinate
meaning. This is not to assert that no cangeant ideas attach
to the symbols of pure mathematics, 40r that would be a
manifestly false statement, mam(’smzeithematical symbols,
being older than many symbelsi:gf\ bhysics, are associated
with firmer notions in the mmﬁ,s of those who use them and,

'm th%iiJI 1}9&‘ have lgmore; meamng That is a sense which

belongs, however rather to psychology than to our present
considerations and.\1§\ not intended in the assertion that
mathematics ha‘{"'eompletely indeterminate meaning or
reference. A\

Mathem&tité, as we have seen (p. 37), may refer to any
systemy 'bf“ebjeets and relations whose names can be chozen
to \hsi:ffe that all the initial axioms of pure mathematics
are ormally true of those objects and those relations. Or

o expressed otherwise, mathematics is a series of hypothetical

deductions from uninterpreted axioms. Thus mathematical
theorems have meaning only in an extended use of that
ambiguous word ; their meaning consists in exhibiting the
structure of indeterminate systems ; this is the formalist view -
in brief.

It is a fair criticism of this view to object that its strength
lies in what it asserts, its weakness in what it leaves unsaid ;
but it must be remembered that * formalism’ has always
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been the working attitude of a group of practising mathe-

maticians rather than a fully explicit philosophy ; of interest

more for its technical discoveries in the field of symbolism

. than for the suggestive, but never clearly expounded,
G philosophy on which it was based.

Formalist views of the nature of mathematics have been
powerfully influenced by an evolution towards increasing "<\
abstraction exemplified in the history of geometry. Professor ()
Hilbert, the founder of the movement, was responsible 561: )
important technical discoveries concerning the mterreiahon

| of the theorems and axioms of Euclidean geomet ﬁd the
possibilities of constructing non-Euclidean geome:tnes, and
the technique developed in the course of these hesearches has
profoundly influenced the view of the natdréof mathematies
held by him and his fo].lowers Fogiﬁhﬁsm is a technique

of that techmque Thls 5(;11001 has held a pa rtlcular form of
for_mahst theory mth, (eﬁect to the nature of mathematics

in whlch the whole of ‘mathemnatics is conceived in the form

of theorems, meticu.lously symbohzed ‘and deduced from
(partlally) gizmterpreted axioms; the validity of these

scxénc;x;\ metamathematzcs whose sub}ect ma.tter conslsts

of fhé’ symbols of mathematu:s proper, and whose aim is to

demonstrate the self—con51stency of mathemaﬁcs proper

-{;{th the help of the most elementary and mdubltably Vahd
a.rlthmetlcal methods. If metamathematlcs can achieve ifs

end, mathcmatu:s ensures its own validity, and is 1ntcrpreted

as a_ formal _system of completeledétermmate reference,

; =~ RINATE TEIErencs, .

.exhibiting by the multiplicity and 1nterconnect1on of its

i Cf D Hllbert Dw Gmnd!agsn dey Geomem.e
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of mathematical theorems is, as it were, the crystallized syntax
—————— .t P — .

of all systems of 1nféﬁ€_l-a7&q5€]eé}§ )

There arc two chief anjections to this highly ingenious
programme ; one of principle and one of execution. In
principle it errs in heglecting to study the nature and limita-
tions of mathematical symbols themselves; the nature of,
the initial axioms and the reasons for choice of thuse axjoﬁ%
rather than others is left completely mysterious. 'l:n'u:s«,:t’he
entire burden of the validity of mathematics is t}njrfwﬁ upon
the metamathematical proofs of consistency and\\'éifesumably,

once again upon the mystericus mathemafical * intuition’

" which dictated the choice of the initial axionis and discovered

those parts of mathematics selected 'i(:)l\\p'ost hoc justification.
And this leads to the second obg’égtfdn, the fact that it is
extremely probable that a me{a;.niathematical proof of the
consistency of the whole giyiﬁ).’h‘é mathematics is impossible.
%&Qgﬂuﬂft}l@?ﬁg&%ﬁ@é to have proved?! that a specific
contradiction could. be* deduced from any proof of the
impossibility of 'thg\occurrence of contradictions in mathe-
matics. It séefhs) in fact, that systems like pure mathematics
cannot be ompletely symbolized, and have a multiplicity
more comiplex than any system of symbols which can be
dengieﬁ"for the expression of that multiplicity. There is
lQﬁle"prospect therefore of ultimate success for the formalist

«\programme in the form advocated by Hilbert and his followers.
But in the philosophy of mathematics constructions are not

less valuable for being ultimately unsuccessful and it has
therefore seemed worth while to supplement the foregoing
by an account of—

(1) the development of geometry and science in general
towards an increasingly formal aspect ;

L ““Ueber formal unentscheidbare Sitze der Principia Mathematica
und verwandter Systeme, 1" Monaishafle fir Mathematik . Physik.
vol. Xxxviii, 1931,
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(2} the Hilbertian view of mathematics ;
(3) details of the formalist programme ;
(4) a description of Gddel's proof mentioned above.

The last two of these sections are mainly of techmical
interest. ' '
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The Development of Geometry

Documentation of the tendency of a science towards increasing
abstraction and concern with structurc. "

"\

Geometry, at first the practical art of performing CalCl%la:’giQ\Iﬁ
required in surveying fields and measuring solidj‘bociies,
developed as the study of the actual thrce-dirr%e{s,fqnal space
in which the Greeks and their followers conq@\@d themselves
immersed, and had attained an extracrdiphry measure of
perfection by the time that Euclid wroteMlis Elements. That
synthesis of current geometrical k{iéwledge was fo remain
the textbook of geometers for man¥eenturies. [t is a plausible
hypotheses that the avidity ’wifz’h"ivhich Euclidean geometry
was studied by the eduga‘béﬁ' was determined as much by
wigyrdhaulbr B’Sﬁ‘f)lfﬁcjf}ca’l:"ﬂ’énsiderations. The Grecks were
attracted by the glepance, ingenuity, and clarity of the
metheds used in #roving geometrical theorems, and, from the
first, Euclid’s Flements became a congenial field for logical
pedants anéb connoisseurs of logic ; emphasis was always
laid upofy the necessity for absolute rigour and logical sequence.
Nor:'d;id this insistence arise from the difficulty of perceiving
theMruth of the theorems, for Euclidean geometry may be

“\Q hard to discover but is easy to digest, and the concepts in the

' Elements though, it is true, of a considerable degree of
sophistication—* lines * without thickness, © points * occupying
B0 space—are mnevertheless derived from ‘actual’ lines
and ‘actual’ points in a fashjon quite clear at the non-
critical common-sense level, Every schoolboy knows how to
imagine 3 line as being infinitely thin.

The reasons underlying changes in the character of Euclidean
geometry are not to be understood without explicit reference
152
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fo the traditional plan of presentation—a plan now widely
departed from in proportion as its limitations have been
recognized by pedagogues.

The FElements were arranged as follows : First a number of
truths concerning lines, points, space, etc., the subject-matter
of subsequent theorems. These self-evident truths, to he
accepted without proof, are divided into axioms and postulates: <
Secondly, the theorems and constructions. In addition thers,
are a number of definitions (e.g. a point as that which h;as:na”:
parts) intended to make clear the nature of theuépt“i'ties
mentioned in the proofs, but not all used in deméns rations.
The careful distinction between theorems.atd  axioms or
postulates is motivated by a desire to dedige the theorems
of geometry, i.e. the truths about agtﬂia} gpa?e, by logical
deduction alone with no appeal to o}H&r‘:sources of knowledge,
In particular, diagrams, although in practice indispensable
for representing the entities }ui;:‘ler‘ discussion in the course of
long and complicated chai;lékﬁﬁmdﬂﬁng@lﬂmwimg}ﬁ&ory be
entirely dispensed mt]:\ Yet the use of diagrams, whether
actually drawn or me\ra}/ visualized, provided 2 peculiar source
of weakness; | dinte they were necessary for facility in
demonstratigns,.fic geometer could be certain of avoiding the
fallacy of:é;s\sﬁmmg to be necessarily present some feature
whose:"gi}%sence was a purely accidental accompaniment of
figuted drawn or visualized. The crude distinction between

'"i}qficidental’ and ‘ necessary ’ features can be made clearer
\'\; By an explanation of the manner in which geometrical diagrams
are used to promote facility in demonstration.

Diagrams assist the imagination by presenting in succinct

1 The distinction between axioms and postulales in Euclid seems to
be that the Frst are seli-evident, but the second must be assumed
without proof, even although not gelf-evident. The student who
doubts them must become convinced of their truth in the course of
the development of geometry, ¢.g. three of Euclid's five _postulates
assert the possibility of certain constructions. Cf. Heath, The Thivieen
Books of Euclid's Elgments, pp. 117-151, for a discussion of conflicting
views as to the nature of the distinctions.
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visible fashion what may prove to be relations whaose existence
can be independently demonstrated ; and the, at best, crudely
inaccurate drawings of black lead on paper or chalk on slate
succeed in this function despite their deviations from the
ideal ; for although lines drawn on paper cannot be the straight
lines of Euclid the geometer can intuit the properties of * ideal;
lines by ignoring such features of the lines actuall}/: 'dljawn
as their thickness, their deviations from the straight;”etc.!
Generalizing from visible figures involves a trivisl ﬁanger of
mistaking accidental characteristics of the, :f:-}h‘tiéula.r figure
for essential ones—trivial because hardly Likél; to be repeated
by other geometers—and a serious dan%e: of accepting without
proof essential topological facts,’édmmon to all visible
diagrams in the physical spaceste Which diagrams belong.

Euclid fell into the lat'gelfj'mistake.’ Topological facts
are such as are unalteredji];ffcontinuous deformation of the
figure, e.g. the fact 'tlli:ét‘ a straight line passing through a
ffﬁfft%ﬂleljglwlgwcut the latter when produced. Most
geometrical re'laitibns except those dealing with lengths ? (the
so-called * ingidence ’ properties in particular) are topological
in the présent sense.

Bughid’s demonstrations, so long thought to be supreme
exap}};ies of logical accuracy, contained unproved premisses

%n‘li even fallacious reasoning, The researches which

. 1 Such intuitive isolation of relevant geometrical properties from
irrelevant is essential to all deduction. Paradoxically enough, the
Greeks thought to do without appeal to a figure, i.e, without intuition,
but the formalists show that intuition is essential to correct proof
(although their diagrams are logical not geometrical ones).

? A glaring example is a proposition implicitly used by him again and
agzin: Given two cireles, C, and C,, if C, passes through a point
outside of C; and a point inside of C,, €, and C, must cut, This seems
obvious enough if circles are drawn on paper but neither follows from
Euclid’s axioms, nor is stated as an axiom,

* These topological features of a diagram are essential to the proof,
e.g. if it be assumed that the interior bisector of an angle A4 of
a triangle ABC, and the perpendicular bisector of the side BC meet
inside the triangle (which seems plausible in a rough diagram) it can
be easily proved that the triangle ABC is isosceles {which {3 not true
in general}, The traditional proofs in Euclid often quietly assume that
if two lines meet inside a triangle they must do so.
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ultimately led to the discovery of these flaws were not
inspired by the expectation of finding them but by the
desire for even greater logical elegance; for, among the
axioms, the famous perallel axom {given a straight line,
through any point not lying on this line or this line produced
a sccond straight line can be drawn such that however far
both lines are produced they never meet) seemned far less .,
? self-evident ' “than the rest. It is difficult to ‘imagine " aa N
line produced to ‘infinity * ! or, on account of its indeﬁinifé D .
character unshared by more  self-evident > axioms, even'to
feel convinced of its truth. As it was a constgnjls\\s.iﬁl of
geometers to reduce the number of proved initi&Mﬁoms to
a minimum it was felt that the parallel axiom miight eventually
be deduced from the simpler remainmg,o?tég: The ‘truth’
of the parallel axiom, however, washEver ‘doubted, and the
first who appears to have attempted toteny it was the Italian
geometer Girolamo Saccheri (£ aggz;l‘afffés.ab omni naevo vindicatis,
Mediolani, 1732), and he only 8341 HidPdct HREH YO EStiblish-
ing its veracity. Mucl}«ijiiljressed by the deductive power
of reductio ad abswiim he conceived the notion of
attempting to proiféaié parallel axiom by deducing a contra-
diction from thécenjunction of the denial of the parallel axiom
with the othér’undenied axioms.? And so, unwittingly, he
proved'n‘}é}lgr theorems in what is now termed non-Euclidean
geom«ibiy‘f This is the crux of the whole matter—Euclid’s
p@ré}fel axiom is neither true nor false. For, in the first place,
\lt\ls now known that the parallel axiom is independent of the
‘other axioms of Euclid, and cannot be deduced from them.
And, further, by denying it {or modifying it) the addition of

! The parailel axiom is mow often enunciated in a form in which
all mention of infinity is omitted. . ) .

2 Denying the parallel axiom gave Saccheri an extra premiss for his
reasonings and therefors justified him in hoping for more success than
his predecessors had had. Cf. G. Vailati, ** Sur une classe remarquable
de raisonmements, etc.” Revus de Métaphysique o de Morale, 1504,
for a good account of Saccheri's work.
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the new axiom so obtained to the remaining Euclidean axioms
leads to the construction of several self-consistent non-
Euclidean * geometries '. These are the famous hyperbolic and
elliptic * geometries’ discovered by Bolyai and Lobatschewsky.
The inverted commas round the word geometries in the last
two sentences emphasize that the word is now being used in
a new sense. The Greeks understood the word geometry as
“the study of actual space, and could not conceive of a plt;fﬁﬁl\l‘ty
of geometries. On such a view the parallel axiom st be
either true or false—probably the first, concgiif;bly the
second, but certainly one or the other. lelﬁ\'éi'ﬁbarrassing,
but unfortunately valid, possibility of thef cempatibility of
both alternatives destroys the whole basis of this view of
geometry. With the discovery of the non-Euclideangeometries
and the superfluity of competing\gaérﬁetries, no ong geometry
could be regarded as a collectiof .o‘f't:ruths about space. And
could at best be interpretegl,‘azs 2 system of hypotheses of the
v T SPRES 5638 o divboms of Euciid then it will have the
Jollowing properties : (here would follow the theorems). This
view (held by mg.@( mathematicians) lays the emphasis on
the deductive qa{m“cti&n between the theorems and the axioms.
It is essential in the geometry under consideration that the
theoren}sjétiow from the axioms ; it cannot be essential that
the axioms should be ‘true’, for we do not know whether
€ aXioms are true, and shall be able to consider many
.'{g}ometri_es with different sets of axioms. Now there is a

AN ‘difficulty about the notion of the axioms being true which

has been slurred over till this point. For, as mentioned
above, the concepts which occur in these axioms are extremely.
sophisticated, obtained by abstraction from ‘real’ lines,
‘real ’ circles, ete. : the same process of abstraction is likely
to be used again in proofs and to introduce fallacies in the
reasoning. Symbols of whatsoever nature are understood only
by a process of abstracting relevance from a tangle of irrelevant
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features, not fundamentally different from the process connected
with the use of geometrical diagrams. If the latter could
lead to inadequate notions of the nature of geometry the
former is also suspect. So two factors converged together
to destroy the view of geometry as being a system of
hypothetical theorems about space—theorems true of space
if the initial axioms are—and to destroy any dogmatic belief

in the unconditional validity of geometrical and other mathe- .
matical results. First, the desire to know which set of 1.mt§al"

axioms was the correct one led to a scrutiny of the nature of
the ideal concepts which occur in them ; secondly, t};Qiééire
for accuracy in geometrical proof produced attempts to
eliminate possibilities of error caused by the process of
intuitive abstraction! by which the geqm:&‘ﬁcal concepts
were derived. ' 2O '

This question of consistency ks of fundamental importance.
Some have held that our conce@ts:\‘:{étfl‘bspa:icbarg self-contra-
dictory, others that the tru‘g‘f;l’“\gf 'axfoaizlflsl zl; 1oqfl‘tOr Sace is
synonymouns with their I;lutﬁal congistency, i.e. that there
is only one self-consist@n‘g\\geometry and that necessarily the
true one. Formal self«i.ﬁc\di:lsistency is disastrous for a geometry,
for if a formal contradiction can be deduced, Le. if two theorems
can be proved\Which contradict one another, then not only
those two Bubrany theorems can be both proved and disproved
in the :te:’m.” In such conditions of course the  geometry’
collglji's}s. And the question of the independence of the axioms,

mihjbh as we have seen, inspired the earlier geometers, is
Nclosely connected with that of consistency.  For suppose that
the second hypothesis mentioned above was correct and that
Euclidean was the only possible geometry; for simplicity

1 Intmitive gbstraction = the process of ignering irrelevancies, not
systematically but by a direct mental act.

2 This result follows from the truth of the formula (p & ~$)3¢g
in the propositional calenlus: a contradiction implies every propa-
sition ; therefore if a contradiction can be proved, every proposition
can be proved.
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imagine that Enclidean geometry is self-consistent and all
non-Euclidean ones are self-contradictory. Let P be the
parallel axiom and A represent the conjunction or logical
product of the remaining Euclidean axioms. Then by
hypothesis, #ot-P (the contradictory of P) and A together
lead to contradiction, hence P follows from A. In othen

~words, the self-contradiction of all the non- Euchdeam

geometries implies that the parallel axiom can be de(duced
from the remaining Euclidean axioms. This S‘ng&e%:‘s why
so much of the work of the large school of get{meiers busy
during the last fifty years with the founda.tms of geometry
has been devoted to the proof that geometnes were free from
contradiction: ; the fact that no contm‘\dictxons occur inside
a formal system {is its most unpqs(ant property.

The investigations of the fodndatmns of geometry have
conclusively shown that the ‘hon-Euclidean geometries are

Wil ggm‘ggpgr:}a% l]p,zwe: therefore demonstrated that no

geometry can be unlquely characterized by the property of
being free from conk(}dlctlons . the last reason for restricting
geometry to ths study of space has disappeared and the
following wew of the nature of geometry is generally accepted :
a geometry ‘does not deal with space but consists of a series of
fornmlés {a logisticlan would say propositional functions)
ch are deduced from a number of initial formule (axioms) ;
3}1 any interpretation of the symbols mentioned in the

"\ 'a.x10ms, which converts the latter into true propositions, is

P
\Y
\;

an interpretation of the gecmetry.

With this conception of the nature of geometry there is
no reason to distinguish between geometry and algebra or
other branches of mathematics, which are all formal systems
in the sense indicated. If a distinction is required to be
made—as it is in practice since we usually have a special
interpretation of geometry in mind—it can be made in some
such way as Russell's: “ Geometry is the study of series of
two or more dimensions " (Principles of Mathematics, p. 372},



THE DEVELOPMENT OF GEOMETIRY 159

i.e. by restricting the name ‘ geometry ’ to absiract systems
of particular kinds of complexity, but any such division is
arbitrary and cenditioned merely by the history and intended
applications of pure mathematics.

This completes my account of the development of the
science of geometry from the study of space to the study of
abstract systems.

What has been said of geometry is true, to a lesser degree,
of other sciences, all of which develop in two distinct ways-—;-"‘; k
by rendering the fundamental concepts of the science nwg'ew
precise {e.g. the transition from ‘heat’ to ‘temperdfu e’
from ‘colour’ to ‘wavelength ') and by disceyering and.
formulating laws of ever-increasing genera]jty\ W These two
processes of growth are interconnected : aj:te’x:r}p?:s to classify
the fundamental concepts of a subject xl@éu;fﬁ to the discovery
of new, and the modification of existimig‘;’ laws {cf. Einstein’s
discussion of ‘simultaneity '} ;. »féﬁﬁulation of new laws
promotes the clarification of ngﬁ%{gﬁg‘%’\I;Sf\lfie?irgﬁytﬁrégsﬁence,
by providing further oppor@m'fies for their verification, and
may lead to their rqpla@}élent. Mutual interaction of this
kind ténds to rob words of their original meaning in return
for technical comhetations, intelligible only in specified
contexts ; in é}ét\réme cases, the words are regarded as mere
ingtrumente\for providing numerical results which can be
compagé\& with experiment.?

D{é “use of the mathematical method, too, often provokes
thevinvention of symbols determined by questions of mathe-
matical exigency and not by the condition of having meaning
in isolation. We may suitably conclude this section, therefore,
by a very striking example of how mathematical treatment of

1 ““ The only object of theoretical physics is to calculate results that
can be compared with experiment, and it is quite unnecessary that any
satisfying description of the whole course of the phenomena should be
given " (P. A. M. Dirac, Principles of Quantum Mechanics, p. 7).
This may be coupled with Mach's remark, “ Science itself, therefore,
may be regarded as a minimal problem, consisting of the corppletest
possible presentment of facts with the least possible expenditure of
thought * (Scisnce of Mechanics, 2nd English edn., p. 490).
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physics led to the formulation of new concepts in the history
of the discovery of Planck’s quantum (see M. Planck, Origin
and Development of the Quantum Theory, Nobel Prize Address,
1922).

Planck describes how the empirical nature of the simple
law conmecting the entropy of a resomator and its ener@
led to the introduction of an absolute value of entropy—"'vhat
one measures are only the differences of entropy, apd ncver
entropy itself, and consequently one cannot speak dn; a definite
way, of the absolute entrepy of a state. Dut #tv theless the
introduction of an appropriately defined ubso{a}e magnitude of
entropy is to be recommended, for the reason that by tis help
cerfain general laws can be formulaied'ie@?}; greal stmplicity '—
and to the consequent appea{i"e\ﬁiée of an uninterpreted
constant—"* while this constagt was absolutely indispensable
to the attainment of a corséct expression of entropy . . . it

wiwrw.dbra qllibra

obstinately wﬁ'ﬁ’é%%anaH’ t}:{f}:mpts at fitting if, in any suitable
form, into ‘the frameé ef the classical theory. So long as it
could be regar;ied:% infinitely small, that is to say for large
values of energin'or long periods of time, all went well ; but
in the general’case a difficulty arose at some point or other,
‘which beéa\.xhe the more pronounced the weaker and the more
ra,%d‘;the oscillations, The failure of all attempts to bridge

f@s “g'.ap soon placed one before the dilemma: either the

~\quantum of action was only a fictitious magnitude and, there-
’ fore, the theeretic deduction from the radiation law was filusory

and a mere juggling with formulz, or there is at bottom of this
method of deriving the radiation law some true physical
concept "'—whose persistent reappearance in many diverse
fields led to its incorporation as a fundamental notion—"' that
the decision [to accept discrete quanta] should come s0 so0n
and so unhesitatingly was due not to the examination of the
law of distribution of heat radiation . . . but fo the steady
progress of the work of those investigators who have applied the
concept of the quanium of action fo their researches.”



The Formalist View of Mathematics

Mathematics, if it exhibits structure, does so in complex fashion with
the help of * ideal ¢lements *.

The last two sections have had an apologetic tendency,
and must be supplemented by one important criticism  if

they are not to convey an altogether misleading impression;"‘;

of the plausibility of the formalist doctrines. For ~fo
characterize mathematics, as the formalists do, as a sm ce
concerned with the exhibition of structure by the :&"Lploy-
ment of symbols meaningless in isolation, ig\to suggest
analogics with the manner in which the str'}lcti}e“of concrete
systems (families of individuals, por’tiox)&?"c& a landscape in
thelr. physical relationships) canw?ﬂewxfﬁgl;‘éﬁfnﬁig bljg rche_xﬁra.ms
(family trees, maps). Such analogiesart hizc?y tol_ij}é mitleading
in two respects: for the fashi'éfi in which collections of
mathematical theorems image the structure of the subject-
matter to which they, mfiy:\be applicd resembles the relation
between a landscape and its map only remotely, the arrange-
ment of the formet-dorresponding to the order of discovery
of theorems,'téér\efore incomplete, and in process of supple-
mentation“That such supplementation is a necessary feature
of any ;@1 hematical symbolism is a consequence of the fact
tll&[t\r;ﬁthematics treats of infinite systems. Any view based
Pt a strict symbolizing of mathematics, as is the formalist,
will have to admit among its symbols some incapable of
interpretation either in isolation or in specified contexts.
Thus the comparison between the present state of physics
and the formalist view of mathematics must not be pressed
too far; the latter is characterized by the presence of the

so-called ‘ideal elements’, meaningless symbols {described
161 M
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in greater detail below) which can never appear in any final
theoretica! formulation of physical truths.

Thus, in so far as formalist mathematics contains
unexplained ‘ ideal elements ’, it will require further explana-
tion: and the (probable) impossibility of completing the
formalist programme makes such a justification imperative.

So far the easiest explanation has been no cxplanatlon\
i.e. the ideal elements have been explained as purely sym’bohc
devices1; but freedom to ignore their mterpreLatmns is
limited by the necessity to justify their mt];o@uc’uon by
proof of consistency and vanishes when it is fehnd impossible
to produce the latter.

Finally we may sum up the formahst\aéw of mathematics
as follows : the typical mathematm&} method is the investiga-
tion of structures of systems by ghe Aise of systems of symbols
of indeterminate reference, arranged in the form of theorems

Wi teav R Yadtigt, and® containing ‘ideal elements’

the employment of the latter is essential, and must be
1eg1t1m1zed by proof%st\)f conmstency
AN

N

The Formalist Progra.mme in Defail
\s

A techmca.l summary, for specialists, of the axioms and symbolic
ovations of the formalist school,

T,
NG

~

) The programme aims at proving successively that one

branch of mathematics after another is free from contradictions.
This is to be accomplished by symbolizing mathematics and

1 Anp "ideal’, I, is a symbol whose addition to a system of formulas,
with approprlate modification of the axioms, extends S in such a way
that the new system, 5 say, agrees with 5 in respect of alf formul:®
not involving 2. Thata symbol I is an ‘ideal ' with respect toa system
S requires proof, ‘Ideals’ function by exhibiting the structure of
systems S as partla.l sections of (often simpler, more uniform)
systems 5’ E.g. ‘the point at infinity’ introduced into Euclidean
geometry exhibits the relationship between the latter and projective
geometry.

'\
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logic simultaneously, i.e. by constructing a formal system
centaining symbols for mathematical functions, numbers, ete.,
aswell as logical constants, propositions, etc. There ate various
novelties of notation which will be described as they arise.
The system ! begins with a propositional calculus employing
the usual signs and the following axioms :—

I. Axioms of Implication

P22 P

e e
B e boop

29D EDHIFIN O

IL. Axioms of or and and N\

"k ¢
\ ¥

2.1. p&gDP OO

2.2. p&gdg O

2.3. #2 g2? \%»glv.’af};‘;ulibrary,org,jn
2.4. pDpvg 0N

2.5, ¢DpvV g.\”?“

2.6. ((po AN (VYD)

Note: & — and; Wwi'or; &, v bind more tightly than 3.

UI Axioms of Negation
Principlex.qﬁ'\’?édmtio ad Absurdum, viz.,
3.1, D g& ~g) D~

Axi()’{;il of double negation, viz.,
m\"s}z ~r~pD P

1 addition two rules of manipulation are used, viz. those
of substitution and the syllogism. '

Note : The increase in number of these axioms as compared
with those used in the logistic calculus of propositions is due
to the change in the purpose for which the axioms are to be

1ie. the system msed by Hilbert (see “ Die Grundlagen der Mathe-
matik ', Abk, des Math. Sewinars v Hambusg, vol. v, 1928).

DD D (D9
#D¢Dd7M>DE2#237) 7\
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used : the axioms now under consideration were chasen
principally in order to simplify proofs of consistency, the
question of independence being subsidiary.

IV. The logical € axiom
4.1, A{x) D A{ed) N
The ¢ notation was invented by Hilbert in order to climinate\\
use of the quantifiers. If Fx is any propositional funcxmn,
eF may be interpreted as denoting any individual, Sﬁy a,
which is such that F(a) Is certainly true if theera isome X
for which Xx is true. The following formulé\allow () Fx
and (Ex)Fx to be defined in terms of the ¢ hotation.
(x)Fx = Fle ~ F) and (Ex),}?s £ F F(eF)
eg. let Fx = x is corrupiible ; ei‘\i:‘an then be interpreted
as denoting the most corruptible {man {or nobedy if nobody

can be bribed). Here if somébody can be bribed we know
witiat AT aed i ey afitigyithe bqbed

V\\Rxwms of Equality
5.1. (Za) :»@ = a)
5.2. (Za& Zhy D (la =b) D {(A(a) D A
Za meansdd is an integer (Z for Zahl = number).
\ VI. Axioms of Number
¥ g
R\ 1. {Zx}D (&' £ 0
. "\ Prmc1p]e of mathematical induction, viz.,
O 6.2 (Z9)D [{40) & @A D 4} D 4(@)]
In addition to the above, the sco-calied ‘ primitive
numbers ' are used, viz. the signs 0, 0°, 0", etc.

e’

In order to restrict the ranges of the variables occurring
and to distinguish between these variables, Hilbert adopts
the device exemplified in the above four axioms of preceding
all expressions in which the variable occurs by the sign of
implication and an expression typifying the variable. Thus
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Za means & is a natural number. Every variable that occurs
will be associated in this way with a typical function
characterizing it which must appear in all expressions in
which the variable appears, just as Za, Zb appear in the
axioms of the last two groups above. For example, a variable
f will be needed whose range is that of those functions of
integers whose values are integers. This has the characteristic
function ¢ (f) which is an abbreviation for (x)[ZxD Z( _;::g)],
These conventions are very convenient as they ob‘.riaj:ettﬁex
necessity for making those distinctions between,.gljfféfent
types of variables which produce such complexa':t)}hi most
formal systems. X x\ '

The above completes the list of genergl 'axioms required.
The various mathematical operations and functions can now
be introduced into the scheme eithef (s} by explicit definition
or (b} by induction. In {a) a ‘f’ar}‘nula is given which allows
the sign for the function m ,’qﬁmﬁ%?l‘ﬁﬁ%jamrm%ﬁ%% jn one
step from any expression ,iri’:.éhich it occurs, 2.8 }x I {fx ==x)
would be a definition q{thé function f of integers which always
has the same va;lt{exs its argument. In (b) formule are
given which qﬂé\} the sign for the function to be eliminated
in a finite puber of steps whenever primitive numbers. are
substituﬂ{g}\ for all the variables, eg. definition of addition
of ir;tt%,g\ers —

S &

SN oto=o

yo :.' 0_1‘_0?:0’ . (2)
0 40=0 (3)
(Zx, Zp D (¢ +3y =&+ (4)
(Zx, Zy) D (x + ¥ = (x +3)) )

In both {(a) and (b} the formule in question are added to
the preceding axioms and treated as new axioms. In case (B)
this procedure is permitted only when it can be seon that
the definition satisfies the condition mentioned above, viz. that
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any formula in which no variables occur, eg. 0 4+ @"
in the case considered can actually be reduced to a primitive
number. How this is done in this particular case may be
instructive. :

We have Z0” and 20”. Also 0" = (0"')’ .
<+ by substitution in (4) 0" 4 0" = (0') 4 0" = (0" + 09"
And similarly 0" = (). 0" 40" == (0°)’ 0" = (0’ 40"
And again 0" = (0)' . 0 40" = (0 + 0" ’

Now using (5) in the same way we get 0 —IT:QQ\_T'O 4- {07y
=(0+0Y. But 040 =g by (2} \by successive

substitution (07 +0") = (((0))")")" ={8Y))’ = (0"}’

— (") = o, 2

The ¢ operator defined above ishised to obtain the so-called
transfinite mathematical fu:};tipns whose values, though
theoretically determinate, g;in:'énly be found in exceptional

wfﬁﬁ?ﬁbﬁuﬁkﬁ% y%ﬁﬁgﬁﬁ%{}iﬁbﬁ involves the performance of
infinitely many operations {e.g. the function f (%) of integers
which takes the value 0 or 1 according as »* is rational or
irtational). & L

The effect of <F when F is a propositional function is to
choose a’walue of the argument of F which makes Fx {rue.
Slmﬁaﬂ}: when fisa mathgmatical function of integers, €'f
ca.t\’bé interpreted as follows : if fx is 0 for all », f=0;

‘~b}herwise €f denotes the least integer for which fr 2= 0.

.y :\ Clearly ¢'f as so defined is a transfinite function of f for, in

N\ ) general, there may be no way of finding the least integer.
It can easily be seen that f is equivalent to (f = 0).

We can now proceed to define the real numbers by means
of dyadic decimals, ie. as a function ¢{x) of integers whose
only values are 0, 1. ¢ will, of course, need a characteristic
formula asserting this, It is;— '

(2% 25) D ((0) ($x = Ovew = 1). (%) (Ev) (b (x + ) = 1))
Let us call this expression R¢$. A sequence of real numbers
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can be defined by means of a function ¢(x, 3), where Zx.'Zy
is true, and such that (y)Ré(x, ).

Similarly all the functions which occur in the theory of
real functions can be defined. The fact that these definitions
involve no mare than the notions defined above shows clearly
that the difficulties associated with the transfinite definitions,
are exactly equivalent to those produced by the use of the

¢ notation.

o P

Note on (odel’s Theorem ! PR
oD ?

A mention of the remarkable theorem which purports to}}erhonstra.te
the impossibility of proving mathematics to benftebeArom contra-
dictions. W)

' 2,

\ Y
Gadel demonstrates that a spegi}ié& class of systems,
including a restricted 2 caIculus\t’)f‘-f propositional functions
substantially agreeing with g@é@@ngﬂimﬁg}a{l@qmﬁﬁw.
ig characterized by the pectliar fact that each such system
will contain theorems w{ﬂch‘ can be seen to be true but do
not permit of formal demonstration according to the rules
of the system. Oné such theorem is described, and it is
shown that thei $8rmal demonstration of this (true) theorem
in the caldalus of propositional functions would lead to a
contr; dic:;t‘inn. Thus that calculus, and many similar systems,
are ifie ‘i:nplete in the sense that some of the true theorems
'c@n‘éerning the subject-matter of their axioms are incapable
yof formal deductive dem-onstration in {he systems.

7

This remarkable result is obtained as the climax of a-

mathematical proof, involving forty-six cumulative definitions,
and therefore, perhaps, too complicated to be described in

1 K. G&del, “ Ueber formal unentscheidbare Sitze der Principis
Mathematica und verwandfer Systeme, 17 Monatshefte fir Mathe-
matik wnd Physik, xxxvii, 1931. ) : L

1 ie. with quantification restricted to the arguments of propositional
functions and not applicable to functions themseives.
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this place ; but the lines of the proof can be indicated. It
is based on the ingenious notion of replacing the brackets,
logical censtants, and all other signs in the propositional
calculus by numerals, a transformation which is, of course,
perfectly permissible, All formule and, in particular, the
demonstrable theorems of the system are thercby t'sq\%—
formed into sequences of integers. Further, stateménts
concerning these formule (e.g. sdch and such & Yformula
follows from the initial axioms) can be expfessed in the
symbolism of the propositional calculus a. t\?o, ultimately,
transformed into a sequence of intcgeféj The chain of
definitions, referred to above, performs this process in detail
and i used to produce a formula thosc formal proof is shown
to be impossible. {’\\‘\

In a later section Godel p:qves that a contradiction could
be deduced from any pm&f that the entire calculus of pro-

wwhesiblendLfungtiogsicelild ‘be formalized in the same fashion

as the restricted ealoulus above. This is a very important
result for, if qorfé:gt, it scems that the calculus of propositicnal
functions will hot permit of the complete symbolizing required

- by formahsrt proofs of consistency. The rcader must be

referr{d to Godel's paper for further details.!

dérspruchsfreiheit und ihre Grenze at the International Congress

\QC¥ also P, Bernay's report, Methoden des Nachweises von
‘} Mathematicians, Zurich, 1932,



SECTION IIL: INTUITIONISM

Static and dynamic attitudes to pure mathematics.
~

"\

THE progress of mathematics is not smooth, nor is the science, , { \

as the layman imagines, a collection of subtle principles ant':l’;

infallible results, springing mysteriously yet convin ingly

into the minds of their inventors. Its discoveries have, in

general, not won immediate or universal acceptance, for

mathematics, like every other system of organized knowledge,

owes its development to the insight of thiul{ém whose creative

imagination has led them to results’ wwhich often startled

themselves and their contempora.r‘ieé‘;: “it is the crystalliza-

tion of an activity more certain ng’ga f‘gsijﬂggﬁ ;ﬁi}é%_ngtsgfimiples'

Yet, a result once gcnerally~é§:’ceptéd by mat haticians is

seldom retracted, and t ¢n ‘only with great pangs ; for this

science has a certaing 'ﬁiﬁaﬂenged by any other department

of human knowlgdge. Tts practitioners willingly conceive

of it as an unphé}ﬁéeable system of eternal truths, an inter-

related systeﬁ} %f theorems which may be extended but not

controx:e\fffg:d'. This type of attitude is essentially static ;

conqei}ghﬁg of a science as if it were a library, which acquires

ngw" \olumes but ncver destroys the old, and therefore
{EJ‘bﬁously inappropriate to sciences like physics, where violent

revolutions are still the order of the day, it exercises a great

deal of infiuence on philosophies of mathematics, on account

of this distinguishing element of certainty in matheniatical

theorems which is so hard to explain.

Nevertheless, this static attitude towards mathematics
demands an ideal science which always advances and never
makes mistakes. When it is held by mathematicians, at any

169
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particular stage in the history of mathematics, it is an
expression of their hopes rather than of their convictions.

In the static vision mathematics is regarded as a body of
truths whose certainty is urichallengeable. Yet these same
truths are the product of an historical process of development,

_in the course of which principles have been freely emplo&s’d
and theorems accepted as true which were later scen 40
false. So there is good reason to believe that somc«ét ‘Teast
of the truths and principles now regarded as ctet:nally true
will be rejected by future generations of maz‘hema.tmlans
Hence the supporter of the static vision, ims \Jlte of himseli,
is inevitably driven to defend his posgtlon by arguments
which will display the principles of #rowth of his science, or
at least ensure that the theoremé‘hk postulates true will not
be controverted.

The philosophies which have been most influenced by a

wwitaibraatiitude ohava beén‘ the formalist and the logistic,

and we have seen how their supporters have attempted to
justify their opm{c}ns the former by reducing mathematics
to logic, the seco\ﬁ[ by proofs of consistency. Strictly speaking
neither of tliése methods results in a principle, but, if correct,
either would ensure the validity of mathematics and make the
static’View a possible one, the assembly of mathematical truths
preserved in the first case being those which can be strictly

% lﬁhduced from the primitive axioms and in the second case

() "those which had been safeguarded by proofs of consistency.

Both of these philosophies are dogmatic ; they are a posteriors
justifications of a’ static attitude towards mathematics, and
suffer from the usual vulnerability of all dogmas in needing

© to be invulnerable, Refutation in a single instance destroys
» the infallible. '

Let us now examine an alternative attitude towards
mathematics which may be called the dynamic, for want
of 2 better word. This is a type of attitude in which emphasis
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is on the growth of the science, rather than on its
invulnerability. - Mathematics is now regarded above all as
a product of the activity of fallible human minds and, as
such, liable to be affected by all the defects to which our thought
is essentially subject. Thus just as the supporters of static
attitudes will tend to emphasize the external forms of mathe-
matics, its formulae gua physical abjects, just because these
are the most permanent and tangible features of mathematical

activity, so also the supporters of dynamic evolutionary s\ -

attitudes emphasize mathematical thought just because LY ”
that element in mathematics which is most intangi‘b\ie
changing, and capable of development. The dynamiezat a.\bltude
is consistent with an evolutionary conception of hl,story and
naturally arises from it, since a general progressﬁe movemnment
in history will account for the certainty ‘of" mathematics,
which is seen now as a progresswa and apprommatory
tendency, a process rather than @@aﬁg%}& y.org.in

The two types of attitude T hs.ye sketched occur together
in the minds of most phllosophers of mathematics, and the
ways in which the ensulng: %nsmn is resolved is characteristic
for each philosophy. A\ordmg as the static or the dynamic
side of the oppoamtwn is given preference, different problems
have to be faced by the resulting philosophy. Thus pre-
dominantly,~static philosophies of mathematics have to
account “fhe development of the science, and- to explain
the pessyblhty of error, etc., whlle the predommantly dynamic

hllosophles will be called on to face the awkward problems
RH:hr;e ‘ universality * and ‘ certainty * of mathematics.

For the logisticians part of the problem is to explain
mathematical discovery; if, as they say, mathematical
theorems are obtained from logical tautologies by means of
logical deduction, how is any advance in rhathematical
knowledge possible ? For in one sense logical deductions add
nothing to knowledge since all that is contained in the
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conclusion was =zlready contained in the premisses. The
answer that the logistician must give is to distinguish between
knowledge and the discovery of that knowledge. Mathe-
matical discovery takes place by a process of trial and error,
Having chosen a formula which for some reason or other the
mathematician believes may be true, he experiments with
various true premisses until he finds a combination fmm\\
which he can either prove or contradict his theorem. Anc% thls
process is needed just because there is no uniform, l‘xuathod
for proving all true formule in the calculus of ]gr{{posmonal
functions. We can even see why this is the cz§r> When, in
the course of a deduction, the syllogistic prietple is used to
deduce B from the two statements \‘4 and 4 DB, the
symbol for the conclusion is alrep{lgzj ctntained in those of
the premisses. In the converse pa:’océéq however, B is given
and we must look for such am A that 4 D B is a theorem

wealredhdyubidaved, dvg. i the ,proeess of mathematical discovery

2
) 2

there is an element of syn"thes1s In order to prove B we
must first Synthesuo\the formula 4 D B.

Those who reJe'{t Ahis solution, however, and belicve that
mathematics >¢annot be deduced from logic will have to
allow some! typn:ally mathematical mode of knowledge, some
prmclp}a\w}uch is characteristic of mathematics. Now we

1{find the opinions of the philosophers who have been
claéed together as intuitionists all agree to the extent that

\"they assert that mathematics is based upon a fundamental

“ intuition of some process or principle which is not capable
of deduction from tautologies and is therefore synthetic in
character. And we shall find that most of them agree in

emphasizing mathematical thought and distrusting the

excessive use of symbolism.
T may now sum up this introduction. There are two
possible aspects of mathematics, the static and the dynamic,

" and according as the one or the other is specially emphasized
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we get sharply contrasted types of philosophy of a pre-
dominantly static or dynamic character respectively. The
former is sympathetic for philosophies with realist tendencies,
and the latter for idealist. The intuitionists are inspired
by the second type of attitude.
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The Mathematical Predecessors of the Intuitionists

Some account of the opinions of Kronecker and other carly intuitionists,, 8
with a digression on the theory of sets of points. \\

2\

o

This section is devoted to an account of opmlons on
questions of mathematical philosophy which “etﬁ\held by
certain eminent mathematicians during the \_gzea.rb which
immediately preceded the full development bP intuitionism.
Ttwas a period which saw, on the one hand%é arithmetization
of mathematics accomplished as a\kesult of the brilliant
researches of Weierstrass, and,, bn the other hand, the
deve]opment by Cantor of they theory of transfinite numbers

v dbraglibes &Hrf%eory of s,e‘f:s of points. The work of Weier-
strass, with his brilliant ‘contemporaries and SUCCESSOTS,
gave the pure matherha}man an extremely powerful analytic
apparatus for han&lmg questions in the theory of functions.
Their discovefiss revealed the imperfections and fallacies
involved itHe work of the pure mathematicians who had
unmedlatﬁy preceded them and set a new standard of

@cy The work of this period is characterized by a
co})}mua.l tendency towards abstraction and generality.

o~ "\Once it was realized that the old concept of function concealed

\ ' surprising subtleties the way was clear for an extremely
general conception of function which in turn led to generaliza-
tions of such notions as integration, convergence of series, etc.
This tendency was encouraged by the success of Cantor’s
theories, which not only appeared to tame the infinite cnce
and for all, making it amenable fo mathematical treatment,
but revealed a veritable mathematical paradise of infinities
upon infinities, each with its own cardinal number to fit into
174
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a correct place in an unending hierarchy. Its properties
proved capable of immediate application to the growing
theory of functions, where it allowed the subtlest distinctions
to be made concisely and accurately.

Yet, for all this success for the transfinite method through-
out this period, even before the discovery of the contradictions
in the Cantor theory of cardinal numbers, some of the greafest

mathematicians protested against the prevailing tendemcy
and tried to persuade their contemporaries, though with(’

little success, to renounce their methods. Much of theu'
opposition may no doubt ‘be ascribed to the me{t{ta“ble
reaction produced by any victoricus movement, })Qt never-
theless an examination of the opinions advanded’ by these
reactionaries demonstrates how the probléms which the
modern intuitionist claims to have solyed arise inside the
very body of mathematics and exegcisgd from the very first
the minds of some of those whateatributednosiyte its
development in modern timegy »

The most striking of these garly forerunners of Brouwer is
perhaps the algebrist, ‘Ki"onecker (1823-1891), who was a
coleague of Welerstmss at the University of Berlin and a
very famous mathema.tlclan Weierstrass had tried to
demonstrate that all mathematical entities cotld be developed
as constru\:ons of mnatural numbers ; Kronecker went
fartheinand declared that only the natural numbers were

rea}\ and that «lf mathematical results must actually be

\re§ults about the natural nmumbers. Thus not only were
N\ irrational numbers, fractions, and complex numbers never to
occur in mathematics, but even negative numbers were taboo.
As Kronecker himself said in a striking sentence, which will
perhaps bear repetition once more, * God made the natural
numbers ; all the rest is man’s handiwork.” He appeared
to believe that the extensioms of the number concept were
due to the application of pure mathematics to the physical
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sciences, and said 1 also believe that we shall succeed
some day in arithmetizing the total context of all these
mathematical disciplines, [i.c. analysis and algebra], that
is in grounding them on the number concept {aken in
its narrowest sense, and thus climinate the moedifications and

" extensions of this concept which were for the most part
occasioned by applications in geometry and mechanics ¢
(Kronecker, ** Ueber den Zahlbegriff,” Journ. fiir Reine u\
Angewandfe Math., ci, 1887, p. 338).  The method adoptéd 0
rid mathematics of these illegitimate numbers was tq replace
all equations in which they occurred by approprnte,@lgcbra.mal
congruences. An example will illustrate this. héfter than a
description. The equation 7 — 9 = 3 \3 s illggitimate
according to Kronecker on the ground “that the expressions
on either side denote nothing, tha‘nur‘nber — 2 having no
existence. The equation must thcrefore be transformed into

AT T g I ’ QY
7+9% = 3% 5% (modulo x + 1)

- (See Kronecker, 1b1d\} 337). In this manner the resulting
expressions obey the same laws of combination as the original
equations, as.{nay be easily verified, so that formally it is
possible td\hanipulate the congruences in the same way that
equat.ign}i‘hvolving integers would be manipulated. Difficuities
hov*\a\ia‘e} arise when the congruences which contain a free
’Vﬁ}iable %, and therefore have no determinate meaning, have
\“\to be determined in such a way as to reproduce resilts
N/ expressed determinately by the original equations befween
integers. This Kronecker does by putting x + 1 equal to 0,

for a congruence modulo zero becomes an equation, and an
exact correspondence is obtained between the congrucnces

so obtained and the original equations. In Kronecker's own
words, *“ The congruence transforms directly into the equation

as soon as ¥ is regarded no longer as a variable but as a
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“ magnitude ’ defined by x 4 1 =0 and thus introduces the
¢ negative unity * (loc. cit, p. 345). The last step of equating
% + 1 to 0 is however illegimate for this could only be possible
if x could take a negative value which by hypothesis is not
allowed. Hence Kronecker’s constructions for eliminating
negative numbers beg the question. Similar arguments apply
to his attempts to eliminate fractions by means of congruences

modulo several simultaneous bases, and complex numbers ,

by congruences modulo 1 4 x% His transformations, besides| )

bemg logmaﬂy unsound, completely obscure the rela.t.lons'

AN
L

they converge, to mention one example out of man)( Possible
ones, and thus are completely impracticable.! v

Another figure who eminently deserves ai:&ntlcm is Heari
Poincaré whose outstanding mathematical achievements
earned for him a great reputation éfnarig mathematicians,
while the vigorous and witty shyl&@fdﬁﬂdﬁﬁf?ri’ﬁy% Rritings
gave him the ear of a very exténslve public. He conslstent]y
attacked the logisticians and’ the formalists although himself
a formalist in his attitucbé\\towards geometry. His arguments
against them, when (ﬁéénxtangled from their polemical setting,
amount to the charge of circularity. " It is interesting to note,
however, thabhie’ charges the formalists also with circularity,
mamta.mmg\hat they base arithmetic and, eventually,” the
rest of \mathematics on axioms which include an axiom of
mduc;t\ion Yet, in the proofs of consistency which alone
Ju"étlfy them in using these axioms, they are compelled to prove
\résults for all possible proofs, i.e. for formule which may
contain any number of symbols. ‘

“‘Then in order to establish that the postulates do not
involve contradiction, we must picture all the propositions
that can be deduced from these postulates considered as

L Cf Couturat, De IInfini Mathematigue, pp- 603-616, for a full

discussion and criticism of Kronecker's views.
N
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premisses and show that among these propositions there are
no two of which one is the contradiction of the other. . . .
Tf the number of the propositions is infinite . . . we must
then have recourse to processes of demonstration, in which
we shall generally be forced to invoke the very principle of
complete induction that we are attempting to verify ” (Science
and Method, English translation, p. 152). '
This argument seemed to spring from an incomplete undgr-::
standing of the formalist method but, nevertheless, desizrz«es
attention, for it shows clearly the necessity for the\use of a
non-formal principle in the foundations of mati'@matlcs
Poincaré, by asserting that the integers were indefinable
and that the whole of mathematics is l?q_qéd,’on the principle
of mathematical induction whose va‘li‘dit'y‘must be intuitively
recognized, adopted an intuitionis{’ ‘Position in effect, and
clearly enunciated doctrines wh.Léh.aIe still basic parts of the
wira R R e 3
The remaining mathg:ma;ﬁfc:ians to be considered in this
section form a group cénsisting of Borel, Baire, and Lebesgue,
sometimes called, flie/Paris School of pure mathematicians,
together with XHadamard, whose position conflicted with
that of thg\'gther three. These eminent mathematicians
expressedtheir opinions in letters to one another,! occasioned

by tk@iﬁﬁb]ication of Zermelo’s proof that every set could be

welhordered. In order to explain how the controversy arose

;"‘a ‘somewhat lengthy digression into the elementary theory

W

) “of sets of points will be necessary. The reader who is familiar

with this subject may omit this section.

Digreggion on the Theory of Sets of Poinis

The 'purpose of this section is to sketch the theory of sets
of points, or rather of the theory of cardinal numbers which

1 Subsequently published as “* Cing lettres sur la théorie des
ensembles ' : Bulletin de la Societd Mathématigue de France, 1905,
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forms part of it, sufficiently far to make the Borel-Baire-
Lebesque-Hadamard discussion about Zermelo’s axiom of
choice intelligible to the reader with no previous knowledge
of the subject. The philosophic difficulties which arise will
be the fariliar ones of the conditions in which mathematical
entities {in this case sets of points) can be said to exist,

We commence with the idea of sefs or classes of objects.

collection of its members in the usual mathematico—realisff
manner, even when a class has an infinite number of meﬁ} ers.
Let capital letters A4, B, C, etc. be used to denote elgaées, and
let typical members of such classes be degdted by the.
corresponding small lefters a, &, ¢, etc. ‘The\ latter can be
further distinguished by suffixes when \ledessary. Thus, in
general, & will be a mermber of ti}e‘gl‘?aés A. The fact that
a thing, x say, belongs to a dagsyﬁf}k?sdyréeldﬁfmgedt%ﬁnteY-
The class whose sole member ié:'a.is denoted by {a)-

We must now define thé wddition, product, and sismilarity
of classes. The sum-class, ZA, of a number of classes A,
is the class consisting ‘of all those things which are members’
of one or more, of 'éhé A’s. This sum-class is supposed to exist
whether the'l'\flil'l\bér of A’s is finite or infinite. If there area
finite an'@gr’of A's,say Ay, Ay, + v - Ape whose sum-class is
being gonstructed, it is denoted by A+ A4+ . 4w

.Il{iéf ‘broduci-class, ITA, of a number of classes 4, is the class
‘Cortsisting of those things which belong to every A of the set
considered. Here again the number of A’s may be finite or
infinite. If the former, and the A’s considered are denoted
by 4,, 4, ... Ay say, the product class is denoted by
Ady ... Ag

Two classes A, B are said to be similar, written A~B, i
there is a one-one correspondence between them; ie. a corres
spondence in which each member a of 4 has exactly one

: o O\
For present purposes this is taken as an undefined primitive ¢
idea. Tt is convemient to talk as if a class or set were a‘\ K
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member b of B corresponding to it, and wvice versa. Similarity
is a tramsitive and symmetrical relation, ie. if A ~ B and
B~ Cthen d ~C,and if A ~ B then B ~ 4. Two classes
which are similar are said to have the same cardinal number
or the same power. It follows at once from the fact that
similarity between classes is a transitive and symmetrical
relation that, if some particular cardinal number is deﬁned\\
as the cardinal number of some definite class, 4 say, the sa’mex
cardinal number is obtained when any class sxmﬂar 0 A
is substituted in the definition. , \\ N

Having defined these cardinal numbers we have it possible,
(i) to define ways of combining them analdgets to addition,
multiplication, exponentiation, etfc., of\\ordmary integers,
and (i) to see how the distinction btheen finite and infinite
cardinal numbers is made. &)

N/

First of all we notlce that, gwéﬂ a pair of classes 4, B, it is
www dbraulibr

always posgiﬁ V16 Co construct a \pair of exclusive classes 4’, B,

withA ~A"and B ~ B, “For let %, y be distinct entities. If

A'is taken to be the .c}éés of ordered pairs 2’ = (g, x) and B’ the

class of ordered paitk'?)’ = (5, %) ; the one-one correspondence

between the mfembers of A and A’ is that by which each a’

is made to c&x:respond to the @ which occurs in it, and similarly

for the B\énd B. A', B' are exclusive ; none of the members

of A<'ean coincide with the members of B’, since each of the

ioﬁner is an ordered pair of things of which the second is ¥,

\and each of the laiter is an ordered pair of things of which

\ \‘ the second is ¥, and x is not the same entity as y.

Now to define the addition of two cardinal numbers : Let

A, B be any two exclusive classes of cardinal number a, B

" respectively. Thenthe sum of @ and 8, writtena + 8, 1s defined

as the cardinal number of 4 + B. In order to see that this

definition does not depend on the choice of the particular

exclusive classes of powers a, B respectively, it is sufficient

to see that if 4, B; A’, B' be exclusive pairs of classes with
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Arm A and B~B' then A’ +B'~4 4 B. This is so
because we can set up a one-one correspondence between the
two classes 4’ 4- B', A + B in which a member of the first,
if also a member of A’, corresponds to the member of A

(which is also a member of 4 + B) to which it corresponded -

in the correspondence by virtue of which 4’ ~ 4, and, if
a member of B, corresponds to the member of B which was

its partner in the correspondence which made B' ~ B. This™ .
is hard to say but easy to see. N
Similar definitions are given for mult1p]1cat10n and”

exponentiation of cardinal numbers. The method }n\\each
case is to take any two particular sets A, B of poﬁers a, f
(if it is a function of two cardinals that is bemg defined}
and to define the required function of ¢ and ﬁ\as the cardinal
number of a new set constructed out of A 'cmd B by a definite
procedure. And each such definition reqmres a proof that
which particular 4 and B are é’f}‘fﬁ%‘ﬁllgaﬂjfélﬁrﬁrf’rﬁ‘aﬁded
they have the cardinal numbers’}i “and ﬁ respectively.
Thus o x 8 is defined as the power of the class of all the
ordered couples (e, 8) wﬁ&n ¢ is any member of 4 and b
“any member of B. &\
The null-class is defined as the class which has no members,
ie. the class A stfeh that xe/ is false for all x; and the wnst-

class as the c];a\;s which contains some term x and is such that, .

if yis a«@ﬂnber of it, ¥y = x.
It mr\low natural to define the relations of ¢’ greater than ™

a.nd“ less than '’ between cardinal numbers. This is done
“as’ follows :—a > B {or 8 > a) if and only'if it is true that
(part of 4) ~ B but it is not true that A ~ B. Now by
analogy with the propertics of natural numbers it may be
presumed that o > 8 is incompatible with a < B, i.e. that
we cannot have (part of A)~B and {(part of B) ~A
unless 4 ~ B, but the proof of this depends on the
so-called Schroeder-Bernstein thecrem.
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Let us now take breath for a moment and consider the
structure that has been erected. We have been referring
quite uncritically to classes and entities ‘existing’, two

L3

classes were said to be similar “ when there s a one-one
correspondence between them '’ and in the last paragraph
we spoke even of {part of 4) being similar to another set.
1§ class is taken to mean what the logisticians mean by the «
term, the development of the theory of cardinal numbers as\
given above becomes identical with the logisticians’ deve(op—
ment of the theory of cardinal numbers. Hence the qpeshon
as to when a similarity can be said to exist be‘Q\{een two
classes is exactly equivalent to the old questloﬁ\as to when
propositional functions can be said to exist: “If A, B are
classes with a finite number of memberg\}éch it can easily
be tested whether a one-one correspmdence between them
wwwqggl_m:ﬁlsn o {rogrlt is sufficient to, 160k at each of the finite
. number of poss%)le correqpondenr:es in which each member
of the one has one or morg ‘paortners in the other in order to
discover whether any of tHese correspondences are one-one.
In the case of sets mth\nﬁnitely many members this procedure
is inadmissible, aﬁd it is these sets for which the problem
is acute. RS
Let us gofsider a concrete difficulty : N, is defined as the
cardma,l ﬁumber of the class of the finite cardinal numbers
1, 2\3~ . Now if a class is known to be infinite it would
seé}x natural to snppose it must contain at least N, terms.
o\ "\I‘here are infinite classes, according to the Cantor theory,
\/ which we have been describing, which contain more than
N, points, ie. which cannot be put into one-one COrre-
spondence with a class of power N, The set of all real
numbers between any twe given numbers will serve as an
example. Tt seems at first obvious that such a set must
contain a subset of N, members, but ‘seeing’ is not the
same as ‘ proving . How could it be proved that an infinite
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class A contains M, terms? The kind of schema which is
behind the intuitive belief that A contains at least N, members
is somewhat as follows :—

A has a member ; select one, %,
A — (x,), i.e. the set of all members of 4 except ¥, has a
member ; select one, x,, etc,

This process can never come to an end, for else the set

would have only a finite number of members, hence the se'g:' )

N

must contain N, members, viz. x4, %g %5, . . - O

The difficulty about this argument is that, in gen'e\{ati’}.no
method can be given for making the choices. The"\&w, terms
have to be chosen by an infinity of successive, choices, each
of which is dependent on the previous ones, si:n{e it is restricted
to those members which have not been,.previously selected.
Can the set of members so chosen becdaid to exist? If this
can be assumed many striking\mé[ﬂm.mﬁgﬁql ; but
without this assumption the Rhole system remains very
incomplete. N\

This was, very crude'l')Q\'the problem Zermelo had to face
when he tried to prqx{&s.tha.t every set could be well-ordered
{see  Zermelo, ‘Beweis, dass jede Menge wohlgeordnet

werden kanny ' (Mathematische Annalen, vol. lix, pp. 514-16).

He was theshrét to use explicitly an axiom which allowed
the infinife)acts of choice we have mentioned.
Tl}e.\'énom may be put in several equivalent forms. In
tl}txiféﬁo“&ng form : * Given any class of mutually exclusive
'E}ﬁ?é'ses, of which none is null, there is at least one class which
has exactly one term in common with each of the given
classes ' it is often called the multiplicative axiom, since it
has to be used in defining the product of an infinite number
of cardinal numbers.
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The Mathematical Controversy

We may now return to the controversy between the French
mathematicians,  Borel inserted a short note into the
Mathematische Awnnalen, criticizing Zermelo's use of the
multiplicative axiom, and thus provoked a reply from
Hadamard in the first of the ‘ cing lettres .

The latter distinguishes between the existence of mathé=),
matical correspondences and their description, and asﬁ’e}rt;"’
that correspondences or functions may very well exist even
although we have no way of describing the «.’Z" That is
certain, is that M. Zermelo gives no mcthod: of effectively
carrying out the operation of which he speaks'{i.e. of making
the infinitely many choices] and 1't {femains  doubtful
whether anybody could finally 1‘[1d1€3.tl3 such a method.

wwwg E}é% &E‘%‘c{tloﬁ‘ o]f] effectively gqvmg a function is different
from that of prowng its ex1sten€e——there is all the fundamental
difference between them whn:h there is between a corre-
spondence which can be dgfiwed and one which can be described.
Many important mathematlcal questions would completely
change their sefise }one word were to be substituted for the
other.” He also makes the point that the notion of a corre-
spondence\whlch can be described is not capable of precision,
and I’Ongs to psychology rather than to mathematics.

In\ e second letter Baire, writing to Hadamard, does not

‘.Qc-:ept the latter’s contention that in Zermelo’s proof the
\“Successive choices are after all independent of one another
for this is only accomplished by supposing that every sub-
group of the set which is being well ordered has been made
to correspond to one of its elemnents. He suggests that the
set of those chosen elements cannot be regarded as ‘ given .
“In speaking of the infinite {even when enumerable . . .}
the conscious or unconscious identification of the set with a
bag of notes which can be given from hand to hand must

y.



THEORY OF SETS 185

disappear completely and, in my opinion, we are in the
domain of the virtual, i.e. we make conventions which permit
us eventually to make assertions about an object when this
object has been defined by & new convention.”  Thus Baire
explicitly states that it is false to consider the subsets of a
given set as given.

Lebesque, in the third letter, is of the opinion that the
existence of an entity is only proved when it has been defined,

i.e. when a property characteristic. of that entity has been\ -

given. Fc suggests that in vaguer cases of the use of the.”

word cxistence, as by Zermelo, all that is meant is f;efe&on‘l
from contradiction of the notions used. In general hg sﬁﬁj;ofts
Borel and Baire. 2 ’

Hadamard, in the fourth letter, crystaﬂiéj&" the whole
argument into the question *“ Can the e;&%ﬁénce of a mathe-
matical entity be proved without defining’it ? I reply in the
affirmative.” He shows that thewﬁtﬁ’ég&ﬁéﬂ@ﬁ?'ﬁlﬁr@piﬂosing
theories is the rejection of théswhole Cantorian edifice of
transfinite Alephs. Q ) _

Borel, in the lettc;r.@iich closes this correspendence,
accepts these drastig comsequences and states that the only
value of calculatioms-employing the Aleph numbers is that
they can provi(f; s:tiggestions for * more serious '’ demonstra-
tions. T ep*réms in the Cantor theory of car_dinals may, by
analogy,{be “wseful aids to the construction ©f valid proofs,
bUt{J'Qf ‘themselves, are statements with no precise meaning.

”h‘sy may, at most, have the status of certain theories in

mdthematical physics.



Intuitionism

There are two critically important peints in Brouwer’s
doctrines concerning the nature of mathematics : the redupti&\l
of pure mathematics to an ultimate basal intuition“/and

" the notorious ‘denial’? of the fertium non datun.) These

aspects of the intuitionist philosophy are unc}oﬂi’g’edly most
difficult for those unfamiliar with this t{ypé of thought to
understand and, if once sympatheticglly’ comprehended,
remarkably facilitate the understandigg/of all that remains.
The only contribution that thQ~pr€sent writgr can offer
towards lightening the difficult effort of intellectual sympathy
required—an effort méter:iq.lly‘%increased by the imprecision

wwwiodbibiel ilEeinsily used By intuitionist expositors—is to

N

O

point out with regard tosthe ¢ basal intuition * that Brouwer’s
views derive from{and are a2 modification of Kant’s (with
alteration of t'eQ”niﬁology) and with regard to the remaining
point that Brouwer denies only a reinterpretation of the
logical pfificiple in question. In fact Brouwer is a neo-
Kaﬂtiai{r'ivho has rejected Kant’s doctrines concerning space,
: iié?’preserving his view of time as a pure intuition given

. z’a;}:riori, and Brouwer’s denial of the law of excluded middie

/% is better interpreted as an emphasis, which can be paralleled -

in Kant, on the necessity for the constructibility of mathe-
matical concepts. '

The account which follows is divided into three sections:

(1) a sketch of the relations between Brouwer and Kant
in so far as they bear on the * basal intuition * ;

1 ' . . . Brouwer, the leader of what is called the intuitionist school,
whose chief doctrine is the denial of the Law of Excluded Middle, that
every proposition is either true or false.”” F, P, Ramsey : Foundaltons
of Mathematics, p. 65.

186



e

KANT AND EROUWER 187

(2) a description of Brouwer’s sociological approach to
science and the doctrine of the constructibility of mathe-
matical concepts towards which it leads;

(3) the elaboration and technical consequences of Brouwer’s

doctrines.

N

N
Some striking analogies assist in understanding Brouwer. { W)
o\

Kant and Brouwer

The intuitionists bear much the same relationutowthe
logisticians and formalists who preceded them ‘gs Kant’s
critical philosophy to the dogmatism which{he attacked.
Kant was concerned to rehabilitate philosophy after the
destructive scepticism of Hume ; the intufitionists, by setting
out to explain in detail the anatomy})i‘mathematics and the
principles on which the understaliaing correctly functions,
attempt to save mathematigg'?&%gz‘dt]fl%a[ﬁégffﬁt\ft%g'if%rce of
the mathematical pa.::at:lonx’e{é.N

Al the intuitionistg{agree in this, that they consider
mathematical knowlédge to be characterized by the employ-
ment of a specific théthod for obtaining knowledge, but differ
among them’sgi‘i?e’s as to the nature of the principle employed.

1f, howe{v,er, the views of Brouwer are considered, who is
at or\%j.ghe most influential and the most consistent member
of tk’@s school, it will be found that he bases mathematics on
~~Qr15filnitive intuition, ‘& basal intuition of the bare two-
Oneness.””  What this means I shall try to make clear by
examining the corresponding terms as they occur in Kant.

First, a few explanations of Kant’s terminology. As is
well known, he makes a distinction between sniellectual,
empirical, and pure intwition. By empirical intuition he
means “the immediate apprehension of a conignt which as
given is due fo the action of an independently real object upon
the mind " (N. K. Smith, Commentary to Kant's Critique of
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Pure Reason, p. 80), and he terms all cogpitive states pure in
which there is nothing belonging to sensation. The following
passage throws some light on the subject. ** The pure form
of sensible intuttions [apparently using semsible tniuitions as
synonymous with empirical intuition here] in general,
in which all the manifold of intuition is intuited in certaifi
relations, must be found in the mind a priori. This{Pure
form of sensibility may also itself be called pure t’:{?,‘;a-itibn.
I then T take away from the representation of a\hociy that
which the understanding thinks in regard to it substance,
force, divisibility, etc., and likewise what belnilgs to sensation,
impenetrability, hardness, colour, ctc., samething still remains
over from this empirical intuitiond fdmely extension and
figure. These belong to pure inih?ﬁt;'on, which, even without
any action of the senses or p;f,jgéﬁsatidn, exists in the mind

riori as a mere form.‘,qf”:s’énsibﬂjty.” (Critigue of Pure

oo
www. dbraulibrary.

S
 This doctrine of space and the corresponding conception

™

Reason, p. 6 )?rg\;\?e nged not linger over the somewhat
misleading terminclogy here involved ; it is important for
our purpose to reqah‘ that for Kant, space and time are pure
intuitions and theérefore given a priori.

For hi{r.l\ " space is not a discursive or, as we say, general
concept {obrelations of things in general, but a pure intuition.
¥ r,'ii;r the first place, we can represent to ourselves only one

e; and, if we speak of diverse spaces, we mean thereby

\only parts of one and the same unique space ”’ {ibid., p. 69).

of geometry * as a science which determines the proportions
of space synthetically and yet a priori " has now become
obsolete by the discovery of non-Euclidean geometries, but
the doctrine that time is a pure intuition is preserved by
Brouwer. Thus he says ““ However weak the position of
intuitionism seemed to be after this period of mathematical
development it has recovered by abandoning Kant’s apriority
of space, but adhering the more resolutely to the apriority of
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fime. This neo-intuitionism considers the falling apart
of moments of life into qualitatively different parts, to be
reunited only while remaining separated by time, as the
fundamental phenomenon -of the human intellect, passing
by abstracting from its emotional content into the funda-
mental phenomenon of mathematical thinking, the intuition
of the bare two-oncness. This intuition of two-oneness, the

basal intuition of mathematics, creates not enly the numbers
one and two, but also all finite ordinal numbers inasmuch{

as one of the elements of the two-oneness may be thought
as a new two-oneness, which process may be reQeafed
indefinitely (* Intuitionism and Formalism,” Inaugural
address at the University of Amsterdam, 1912h
The primary intuition of intervals of time ‘% “falling apart
into sub-intervals, which may be resymhgslzed together to
form the wholc interval, is the basis, of. Brouwer’s theory of
the natural number. Brouwer’s W(Hanﬁ%{ilégrﬂrﬁl%rﬁmmt“’e
intuition, approximates more tg\ Ka.nt s schema * If five
points be set alongside one andther thus . . . . ., I have an
image of the number ﬁve\ But if, on the other hand, fhis
thought is vather the’ ?@resentatwn of a method whereby a
multiplicity, for instauce a thousand, may be represented in an
wmage in conforinify with a certain concept, than the image itself,
this represcn’chﬂon of a universal procedure of imagination
in providing' an image for a concept, I entitle the schema
of thl's’éoncept,” [ibid., p. 182, my italics]. Thus the funda-
men"‘bal phenomenon on which Brouwer bases pure mathe-
\Qlatlcs resembles what Kant called a schema, and their
d_aﬂerence of nomenclature cannot obscure the profound
stmilarities in their position. For Brouwer, as for Kant,
thfv‘ judgment of mathematicians are synthetic and a
priori.
" But Brouwer’s improvemenits on the doctrine of Kant
are seen in the former’s insistence on the constructibility of
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mathematical entities. Kant sees the essence of philosephical
knowledge in that its concepts are constructible. He says:
" Philosophical knowledge is the knowledge gained by reason
from the construction of concepts. To construct a concept
means o exhibit a priori the intuition, which corre.sponds to
the concept.” (Critigue of Pure Reason, p. 577), and again :
“I comstruct a triangle by representing the object which(
corresponds to this concept either by imagination alone,
in pure intuition—or in accordance therewith also onypaper,
in empirical intuition—in both cases completelyla “priori
without having borrowed the pattern from anyﬁ&*périence *
{ibid.), and again: " mathematics can achie}e"nothing by
concepts alene but hastens at once to th}iition, in which it
considers the concept in concreto, thoughrnot empirically, but
only in an intuition which it preseht;slz a priori, that is, which
it has constructed, and in whjchijwhatever follows from the
W RSP RYRARERHLD of the ,Qﬁn;é’cruction must be universally
valid of the object of thef{é'oﬂcept then constructed ™ (ibid.,
p- 578). This is altpget.}ier too vague to be regarded as a
satisfactory acco:untx\} the role of intuition in mathematics,
but if we recalI~t}n\3"1:>art assigned to intuition in the formalist
scheme we $hall see how closely that view of mathematics
also is related to the Kantian view of mathematical knowledge.
For J:h}” formalist, too, the mathematical method is
di\}{ng:uished by the use of intuition but with this difference
R ﬂ}at the intuition can only function when the concepts have
\ “\ been embodied in concrete symbols. Thus the content of the
N/ formalist’s intuitions is the relations between symbols, while
the content of the mathematician’s intuition, on Kant's
view, consists of relations between concepts obtained from
empiric intuitions of sense-data embodying those concepts.
For Kant, then, geometrical results are to be obtained by
intuitions derived from locking at triangles, circles, etc.,
drawn on paper. This view is obviously inadequate for
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modern geometry when such figures are quite unnecessary,
and often physically impossible to represent.

Brouwer, however, arithmetizes the entire process and
confines his ‘ basal intuition * to the form of the conceived
multiplicity of the intervals of time. This process, according
to him, is sufficient to generate the natural numbers, a series
from which all other mathematical entities must be derived
by medifications and repeated application of the same method.

The Sociological Basis of Mathematics . \\“

Brouwer's theory of the evolution of pure mathematics.fegards the
laws of logic as the historical product of man’s attempt bo‘organize
sets of object finite in number, On examination, gefsame iaws
are found to apply also, with one exception, to the fDfinite subject
matter of pure mathematics, That exceptigpuisithe law of the
excluded middle. ' i N/

www.dbl'é;ﬁlibral'y.org_in

Brouwer bases his criticisms of certam logical and mathe-
matical methods on historical agd:;é'éciological grounds. In
the present writer’s opinion, q,uestibns of origin are irrelevant
to the correctness of suc@;n}ethods and, though they may
furnish presumptive evid’e'}rcé of the existence of errors, must
always be supplemenfefi by arguments concerned with the
content, and not' t;hé‘h’istory, of the criticized theories. Since,
however, BI'O,UW&mimself considers arguments from origin
of imPG'Tf&FQé,”’it is as well to present his doctrines in the
framew?%‘k;\ he has chosen. His sociological views are
interesting on their own account, and undoubtedly reveal
t.hé\sﬁn‘ounding atmosphere of his opinions.!

Ifl his inaugural address at the University of Amsterdam
(1812) Brouwer said : “ To understand the development of
(Il;agé:ul?:?e;éaélll‘y’ L. E. J. Brouwer, “ Intuitionism and Formalism *
in Bullstin of :;:,’SSA?;Eert?cZnUﬁlfxizlgz?:alA ?;:gda? 119;3}'1301%1]1:33

fy, val, xx, s

" Mathematik, Wissenschatt " “ :
atik, und Sprache,” Monaishefte fiir Mathematik
und Physik, vol. xxxi, 1929, p. 11;3. . sef
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- the opposing theories in this field [i.e. in the foundations of
mathematics] one must first gain a clear understanding
of the concept ‘science *; for it is as a part of science that
mathematics originally took its place in human thought.”
Science he conceives to be the systematic cataloguing as
laws of nature of causal sequences of phenomena, especially
such as are important in social relations. Mathematicé,\‘in
particular, is a branch of scientific thought concerngd; with
the structure of phenomena. A mathematicall _attitude
towards phenomena arises as an act of will of thﬂntilvldual
produced by an urge towards se]f—preserva.th and the choice
of structures for consideration is therefore determined by the
exigencies of the individual in his r%t;on to society. The
earliest kinds of structure which men‘ are forced to recognize:
are the forms of organization qf the groups of persons with
whom they live, the structute: of society and the family ;

wrorw.dBE auflb{ﬁlﬁ P82 as a medmm for sacial activity, for the
transference of wishes! ‘from individual to individual. A
specifically scientifi¢ “attitude arises in two stages, as a
causal outlook ahd as a temporal outlook. In the first, men
choose to cqnsﬁer phenomena in the aspect of identical self-
repetltlon, a“nseful point of view because steadily improving
catalo{ues ‘of causal sequences of phenomena enables desired
hendmena to be produced, knowledge of causes giving
\Q trol over efiects. Man not only discovers order in nature
o in this fashion but creates it by isolating causal sequences of
<‘~;":_ phenomena, ie. by experiment and construction. By his
own ordered activity, he supplements the natural phenomena

and widens the applicability of his laws. This is notably

the case with counting and measuring, which are the activities

par excellence by which man introduces order into nature.
Mathematics, however, requires further explanation, for the

causal laws so far described are essentially approximations

and are not proof against sufficient refinement of measuring
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tools, in contrast to the unchangeable exaciness- of
mathematics.

The origin of this exactness is the fact that mathematics
arises out of the femporal outlook in which visual perceptions
are regarded as separating into two parts (in the relation of
before and after). From this is obtained the intuition of the
primitive ‘two-oneness’, the whole as capable of division into
two parts, in turn capable of division into two parts, and so
on. The judgments of mathematics are synthetic and a priori, ;"‘f K
ie. judgments independent of experience and not capablq,g{'w
analytic demonstration. Thisexplains their apodictic exaptfnéss.'

Al this is plansible without being startling; and one may
agree that mathematical activity has its roots in spci})logical
activity while disagreeing profoundly with theiituitionist.

" The question where mathematical eXacthess exists, is
answered differently by the two sides; tﬁp'intuitionist,says:
in the human intellect, the formaiai{s\é,\gﬁ%gr:au&b?égé?rg‘fﬂ)id.).
For the formalist the fact that.tfigi'fh‘ematical theorems are
expressed in a symbolism is,esséﬁtial to the understanding
of mathematical method ;' #his is not the case with Brouwer.
Language for him is "rh\:éssarily uncertain and inexact.
He- asserts, moreovers, that the use of language preceded in
peint of time tljle’&e{relopment of the scientific and mathe-
matical Ouﬂﬂgk,&-.\it was a natural consequence that, although
the grOWthQi‘I’flathcmatics demanded the invention of a new
Ianguagf; i}f symbols to allow individuals to. communicate
“ﬂﬂlsﬁe another the results obtained, this new language
a&bpfed forms of grammatical convention of the old language |
of everyday activity.

“ The laws of logic developed at a time in man’s evolution
when he had a good language for dealing with finite groups
of phenomena. The so-cailed logical principles, therefore,
aTose as expressions of the structural interrelationships of

sentences in the language, and later were found to work when
[#]
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apphied to the universe, e.g. the law of the excluded middle
was originally an hypothesis and when used in grounding such
sciences as palzontology, €tc., the practical impossibility
of finding examples to disagree with the laws, replaced the
“logical impossibility * of the earlier laws of language. The
reliability of logical principles, in practice, rests upon the fact,
that a large part of the universe of experience exhibits'f.et:\
more order and harmony [Treue und Zufriedenheit] in.dts
finite organization than mankind itsed™ (* Matlfé;chatik
Wissenschaft u. Sprache,” Monats, fiiv Matk\w Phys.,
vol. xxxi, 1929, p. 156). L&

On this somewhat dubious history is founded a distrust of
the laws of logic. Formalism, from thig.peint of view, appears
to lay exaggerated emphasis on lahguage culminating in
mistaken attempts to eliminate contradlctmns without critical
consideration” of the pa_rtlcula‘r concepts to which the laws

‘“’“""’-%?‘"l%“glféa are 'Beﬁlg ar.)plledv

The forms of language are, however, mutable with its
subject-matter, and(tlle laws of logic amenable to critical
investigation wkken applied to mathematical objects. In
Brouwer’s own words the result is favourable for the laws
of 1dent1ty.,\ t;dhtradlctmn, and the syllogism, but unfavaourable
for thgylaw of the excluded middie !

hjg,’then is the novelty of the whele position, but it must

. ]pé\considered in conjunction with the contention that only
N stch mathematical entities ‘ exist ’ as can be constructed
\m} “ by means of the basal intuition.

*“ From the present point of view of intuitionism therefore
all mathematical sets of units which are entitled to that
name can be developed out of basal intuition, and this can
only be done by combining a finite number of times the two
operations : ‘to create a finite ordinal number, and to
create the infinite ordinal number w!’; here it is to be

1 w is the ordinal number of the series 1, 2, 3, . . -
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understood that for the latter purpose any previously
constructed set or any previously performed constructive
operation may be taken as a unit 7.1

So, to summarize this account, Brouwer grounds intuition
on an account of the historical development of the sciences.
Science in general is characterized by two ways of classifying
phenomena ; first, by arranging them into causal sequences,
secondly, by dividing them into parts which are in the
temporal relations of immediately before and after ; mathe-

- ) - x "n
matics, in particnlar, arises out of the second Procesge

Abstracting from the specific nature of the phenomena\in”
any one such process of division in time gives the’gs)efal
scheme of ordinal succession out of which a.rises‘tljre“basal
intuition of the natural numbers. Logic, on theother hand,
developed historically as the expression of ’thfe}felationships
between propositions, referring only 1o ]%m%sm%; ghgeﬂ]omena
finite in number. Hence its laws musk.hot be assumed to
hold for the infinite subject—mattqr{éf’l:nathematics without
further examination. The resul‘t{'c;f‘ this examination shows
that all the logical laws are valid except the law of the
excluded middle. \\
¢\

. X\ :
The Denial ot‘f;he Law of the Excluded Middle

In “ denying* the %W Brouwer is emphatically asserting existence of
mathematicglf entities to be synonymous with the possibility of
their constfustion,

If the kﬁ’a‘fs stated in the form that a proposition is either
true ordalse its truth appears so obvious that it is incompre-
heng}il’}ie that anybody should dishelieve it. But the apparent

Consequently, the intuitionist recognizes only the existence of
denumerable sets, ie. sets whose elements may be brought into
one-ane correspondence either with the elements of a finite ordinal
Dumber or with those of the infinite ordinal number . And in the
construction of those sets nejther ordinary language nor any symbolic
Anguage can have any other part than that of serving as a non-
rua.thema]txca,l auxiliary, to assist the mathematical memory or to
tnable different individuals to build up the same set.” * Intuttionism
and Formalism,” p. 86, See also p. 209 below.

~

N
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simplicity of enunciation conceals the difficulties implicit in
the notion of ‘truth’, a notion which those who most
confidently believe in the law often find hardest to explain.
In mathematics the question of the truth of mathematical
theorems coincides with-.the question of the existence of
mathematical entities; if the conditions of wvalidity of
mathematical theorems were known the conditions for thev .
‘existence ' of mathematical entities would be known' and

vice, versa. So the d_ispute between Brouwer qriﬁ.ﬁ'rnf)re

orthodox philosophers with respect to the vgﬁ@tﬁz of the

tertium non datur is seen to be one as to the r;;kfx:u;e of mathe-
matical existence rather than as to the validity of the logical

principle. This interpretation gives pry;to the dispute and
removes the air of paradox which “surrounds Brouwer’s

philosophy. Brouwer, indeed, #\ ot denying the fertium

non datuy in the generally 'ac‘qeii’ted interpretation of that

otéli:%g i%‘rar ipIE; Bt rathér emphasizing that existence in

mathematics is synonyrﬁ{)"us: with constructibility, and that

the truth, and indeed Significance, of mathematical theorems

is conditional op{the possibility of constructing the entities

which occur: Jin“their formulation. In order to understand

his posit:'fo\n’,fﬁlly it is therefore necessary to elucidate the

notior?‘{&t'constructibi]ity ; this can be done by giving an

accoumt’ of Brouwer’s treatment of the continuum.

O

A\ The Intuitionist Continuum

* Points * in the continuum are obtained by using free-choice sequences
constructed by arbitrary choices of integers at each stage;
significant statements concerning such infinite sequences must
contain an implicit or explicit indication of the method for testing
their truth in a finifte number of steps. This is the correct inter-
pretation of the rejection of the law of the excluded middle.

We commence by describing a well known method for
deﬁning the points of a mathematical continuum by means
of ‘nests of intervals’. A “nest’is a sequence of intervals



THE CONTINUUM 197

each lying inside the previous one and contracting indefinitely
in length ; and each such nest picks out a real number from
the continuum. If our continuuwm is a line we can for example
divide it into the intervals ... {(—»n—1, —u),
(—#n, —u+1), ... (1,0, 1),1,2,...(#a=t1),
and then divide cach of these into half, these new
intervals again into half, and so on.
This process corresponds to the actual process of approxima-
tion in measurement. If we use instruments which measure

with an outside error say of '5 cm. we will be able to focate
the position of any desired point inside an interval 1 cre q}x ’

length. Using more accurate instruments, say WItB\ an
outside error of ‘25 cm., we can mow locate any desired
point inside an interval ‘5 cm. in length. Pro\aﬁmg the
outside error of our instruments ultimately, betomes smaller
than every length however smal&\asmibtrm]l&rbhmrglme and
more accurate, we shall be able to’spec‘lfy any point by
specifying a nest of these measuren}’eﬁt’ intervals. In order
to make the abstract scheme correéindﬁd hetter to this process
of measurement the i.ntervgls&ét each end-stage must be
made to overlap, Thus foi; t‘h\ehrst stage we take the intervals
AL O (—E 4 0 1 (i—h D
and can now he sure\that each pomt lies tnuside an mterval
of length of 1. ‘Witﬁ similar modifications at each end-stage
we shall hang» geometrlcal schema of the continuum.

To get fﬁe corresponding  arifhmetical schema we need
only Con&der a geometrical schema in which there are a finite
nunﬁ{er' of intervals at each stage, since this will supply
arithmetical names for all the points in a finite stretch of the
line, and we can set up a one-one correspondence between
this stretch and the whole line, thus obtmmng the names for
all the points of the line.

These preliminaries accomplished, a point can be specified
in the following way : at each stage of the geometrical schema
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we number off the finite set of intervals which have been
constructed, and now specify a real number by stating the
number ¢f an interval which contains it at the firs? stage,
the number of a smaller interval which contains it at the
second stage, and so on. So each number is given by an
infinite sequence of integers. This, of course, exactly
corresponds fo the specification of a point by means of a\<
non-terminating decimal in the usual decimal representatioh,

All questions dealing with the existence of points"tin k-
line or the existence of real numbers may therefore befeduced
to the existence of infinite sequences of int'g yrs, such
sequences being constructed by arbitrary ch@i3:>s of integers
at the first place, the second ?Iace, t}Q Jthird place, and
so on. These are the  Wahlfolge ’, Bipuwet’s * arbitrary-
choice sequences’,! and the contimﬁ&iﬁ is the concept whose

. vww_qgr"ggq‘i’%?%ring%%qﬁ? all such sgqgg?ic’cs. The continuum can,
however, in no sense be sajd}i[d be a complete totality, for
though it can be more agd";_i‘ﬁore completely specified as our
knowledge increases t{l.s Hri.ngs us no nearer to exhausting
it; itisa ’ medilp;ﬁ})f free becoming .

With respect ta'an infinite sequence of integers, gencrated
bya successidi bt arbitrary choices, the intuitionists maintain
that only’ifliémse propositions are significant which can be
verified 4 | a finite number of operations. Any proposition
“(hi@f':for its verification, would necessarily involve the

_Suctessive scrutiny of alf the digits of the infinite sequence of

~ “\:digits is senseless just because the sequence is never finished.

This excludes all general statements about the totality of
integers in the sequence.

The theory can be illustrated by considering the slightly
. different case of a scquence whose successive digits are given
by some kind of law, e.g. (i) the sequence of the digits
in the decimal expansion of =, or (i) the sequence of the

1 CE infra, p. 203,
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prime numbers in order of magnitude. In these cases it
will be possible to make some general propositions, e.g. in
(i) we can say that all the places after the second ‘are filled
by odd numbers, but this is a sensible proposition only
because the method of constructing the sequence allows us
to verify the proposition in question in 2 finite number of
steps. So, in general, it will not be permissible to make general
statements about infinite sequences unless means are given
of verifying them (or disproving them) in a finite number

of steps, and a fortiori it will be impossible to make gener:;.lf:,:

%
Aol

statements about the continuum. N
This 1 take to be the correct interpretation of the Dhasis
of the intuitionists’ denial of the law of the excluded middle
when applied to infinite sequences. How that .Qe;;ial follows
from their peculiar view of the nature of genergli ‘mathematical
Propositions it is easy to see. W\A‘,_gm?ﬁbna(gpy%x@mntial)
Proposition abeut the integers composing an infinite sequence
can only be said to be true whepf'a:.lsonstruction has been
found which shows how to verify'ft:’in‘a. finite number of steps.
The corollary with respect {)'\falsity of such propositions is
¢qually important ; they,&ah be said to be false only when
the assumption of theif truth leads to a contradiction. If
the ‘ truth’ and 'f\afsify‘ of general mathematical proposi-
tions is interpre‘r{’é; in this way there is no reason to suppose
that these twof}alternatives exclude all others, e.g. it may be
impossiblg\t‘& prove Fermat's theorem and yet the assumption
of its. jci'i;t'h may lead to no contradictions. If this were the
€ase\we’should have an example of a proposition neither false
flot true. From this point of view the intuitionist position
1s based on the possibility of the existence of mathematical
theorems which can neither be proved nor disproved, and
Fas lately been strengthened by the discovery of the
completeness of the caleulus of propositional functions.
It follows that for the intuitionist the truth of a proposition
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# is not, in general, equivalent to the falsity of its contradictory.,
Take, for instance, a proposition like (A} : * there is a prime
number of the form x? 41" whose contradictory is, (B):
““there is no prime number of the form x%* -+1". The
intuitionists will say that neither 4 nor B have sense untik™
constructions are known for testmg them. In this partl-"ula}
case we may, e.g., form (4'): * there is a prime number -of
the form x? -1 and less than 18’ whose vcrmca\tmn is the
simple ome of testing whether any of the prm}s Aumbers
which are less than 18 are of the form % 4}1. Similarly
we might be able to form a B'. Tt does\ndt follow that A’
and B’ will be contradictories in the Q?t\\hodox SETISE,

I have set the matter out in $his way in order to show
that the conflict between Brouwer‘a.nd supporters of traditional
logic is one rather as to the &direct criteria for the stating

! jbra it elnerlal;g.;c(lcal Propomtmns “rather than any differcnces as
to the validity of the. zmmm non datur., But there ¢s a real
difference of opmm between the intuitionists and those
who take an extéusmnal view of propositions existing in their
own right. ¢

In brigk then Brouwer’s criterion of constructibility amounts
to the\fatement that ail genuine general propositions in

hematlcs must contain some method for verifying them
\a finite number of steps; and the rejection of all forms

¢ “\ of words which do not satisfy this condition leads {o apparent

\ ) denial of the law of the excluded middle. Consistent accept-

ance of this attitude demands reformulation of orthodox logic
and of much orthodox mathematics, and this has been to

a great extent accomplished with amazing energy and

ingenuity by Brouwer and his disciples.

o~



Supplementary Note on the Intuitionist Caleulus of Propositions

This section and the next ate of mainly technical interest ; they include
the complicated intuitionist definition of sets (classes).

A. Heyting has recently produced a calculus of intuitionist

logic (“Die formalen Regeln der intuitionistichen Logik,””

Silaungsberichie der preussischen Akademic der I'Va'ssensckaﬂgﬂ;':

Phys.-Math. K1., 1030, pp. 42-71, 158-169) and this acdount

of the details of the intuitionist constructions is bage@ﬁartly
on his paper and partly on the published work'Q:ﬁHBrouwer
and Weyl. \%

It may be said at the ountset that from the\\intuitionist point
of view a calenlns is useful merely as a maa\h.s' for understanding
the ideas expressed by it and \hmmqilIﬁipﬂIﬁa'CylﬂrgﬁnlphaSiS
is laid upon the semantic or meta-;;yéteﬂiatic concepts, involved
in the study of the system qu@.’g’bfect of investigation, which
are all-important in the corrésponding formalist structures.

Heyting uses four p:giq;itive concepts in the propositional
caleulus, viz. “ g implies’d ", “gand ", “aorb’”, “nota”,
n_one of which can be defined in terms of the others. The
sign ““not a @t~ al may be better rendered perhaps as
“ais imposgible ”, for the caleulus we are describing is meant
t(f appI{\ohly to mathematical propositions. The chief
dlﬁ?r”(free between this calculus and the Russellian is that
ﬂ"ls Mormula av e~ is not true. On the other hand
YY~{av~a) is a true formula. This is the so-called
theorem of the absurdity of the absurdity of the law of the
excluded middle,2

1 The Siﬁn .
— 8N actually used by Heyting h

2{(1:: ]J;Ypograph_icaj oned | ¥ yting has been replaced here by
that f 4o been shown by V. Glivenko (Bull, I. de Belgique, 1929)
in the iﬂtu?t?o];?stpiggiid in dcn"ﬁ]in?r]; logic, ~ ~ a is a correct formula

. s , BT at if ~ i
OFiC, ~ g is true in L intuitioni;t. @ can be proved by ordinary

201
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Heyting shows incidentally that the eleven axioms of
the propositional caleulus which he uses are independent
of one another and that the feréium won datur, ie.
the formula ~ ~a>4, cannot be proved from his
axioms, _

The intuitionist calculus of propositional functions cors(a:ins
some novel features. In particular, three different, gigts of
equality or identity are used: (i) p =¢, “ p isi‘ghe“same
object as ¢, (ii) the sign =, for equality of mumbers, etc.,
(i) the sign =, used for mathemati@d} identity (as
distinct from equality) and defined aftésh'for each kind of
mathematical object. O

The formula $ = $ does not holh’ for all signs $, but is
used to characterize those 5@;9\1 which stand for axioms;
eg. the axiom 6.1 reads ;fl' =1, translated ‘1 is an
object * (ste). O

v dlrau BTk ‘gi{j\z}égs]’ of this calculus from that of the
logisticians® are (i)the fact that neither of the signs {x) or (Ex)
can be deﬁneﬁ,'i\;} terms of the other, (ii) the introduction of
the sign (f)a\:{rhich may be translated as *‘ the expression
obtained(ftom 4 when ¥, wherever it occurs in a, is replaced
by the“sign $”2 In terms of the sign (%) and = it is
PQE‘:;S}BIE to define the expression g (%) which may be translated

Qé.s"“g does not confain x". This makes it possible to

\ distinguish between functional and propositional variables

without using different kinds of letters for the two as in
Principia Mathematica.

The properties of natural numbers are deduced from Peano's
axioms, the following conecepts being taken as primitive:
e, (“isa”); &'p={"the x of p>') N (“ natural number ")
seg (" successor of ).

1 Cf, eg. Hilbert-Ackermann, Grindgeseize der Logik.

* The use of this sign seems to have been first introduced by Von

Neumann (“ Zur Hilbertschen Beweistheorie ”: Mathematische
Zeitschrift, vol. xxvi, 1927).



THE CALCULUS OF PROPOSTIIONS 203

We now come to the intuitionist definition of se/s.? The
definition of these, as of all mathematical entitics in the
intuitionist scheme, is based upon the basal intuition which
supplies the infinite scquence of the mnatural numbers
Thus it is fundamental for the intnitionist definition of scis
that we should be given an unending sequence of signs,

~

N

defined by specifying the first member of the sequence and a
law for deducing any member from the one which immediately
precedes it. It is convenient to use for this purpose 1}1?..5."3
sequence { of integers: 1, 2, 3, . . . Itis the members ofotfj&isw:
sequence that Brouwer calls * Nummern®’ in his dqfi’;’f%ioh
of sets, and it is to them that reference will be matk\.' “when
speaking of ‘ integers’ in what {ollows. \ )

We have to consider infinite sequences ofoiﬁ}}éécrs chosen
at random, with repetitions permitted. Inush sequences the
members will in general obey ngrpegilndrdlibraid bogguetion,
and the sequence can be considéifcri’ as constructed by
Su(fcessive arbitrary choices of ;}ﬁi’ihteger, each such choice
being completely independent'\of the previous choices. Such

:an Infinite sequence will be\’ ’élled a choice-sequence (Brouwer:
Wahlfolge ). X\~
A set is a law whieh correlates groups of signs in the
! The WA
repro ducggﬁﬁg—?? given by Browwer is very obscure and is therefore
enge. ot e\fs(Gt guard agamst possible misinterpretation ; ** Rine
lelkiir]ich £ __umesetz, auf (xruqd cl_essen, wenn immer wieder eine
Bestimmic: eichg_l\{:r' }g‘ewﬁh_}t wird, jede dieser ‘Wahlen entweder eing
erzengE orter abel:d'el I—? mit oder ohne Beendigung des Prozesses
Vernich, ung et 1;{ emmung des Prozesses mitsamt der definitiven
chyioder app csd Atesultates herbeifiihrt, wobei fur jedes w > 1
webigstens eine G\E_l tgten und ungehemmten Folge von 2 —1 Wallen,
fite Nummes —euzngner apgegehpn werden kann, die, wenn sie alf;
herbeifihrt, ]eégc“é' éf wird, nicht die Hemmung des Prozesses
eTzeugte Folg, " disser Weise von ciner unhegrenzten Wahlfolge
F_or‘tsctzl)arkegits f;"'?;l ,zﬁlchenrel‘hen inkiusive des charakters ihrﬁr
5 our valligen pot Welche sich nach jedor Wahl belicbiy (eventuell
gen BQStlmm‘thElt, jedenfalls abor einem it

entsprechend) s Me 5
dEarsteHba.r c}it;e?;%:;ne].ianzg(“‘ehhe also im a]lgemclinmrll%cel?tgefzcrt?;
Fl 1 -

Dtstehunggar der Elemcn?:e ement der Menge.  Die gemeinsame

: einer Menge A werden wir kurz
L ) ebenfall
bezeichnen. (M athematische Annalen, vol.) Il:iu:iiis
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following fashion to some of all the possible arbitrary choice-
sequences which can be obtained from the members of 7:
any given specific arbitrary choice-sequence the law may
(i) correlate some combination of signs to the first integer in
the choice-sequence ; this group of signs may be called the
first stage in the element corresponding to that sequence. .
Or (it) the law may specify that there is no group of mg‘lﬁ\\
correlated to the first integer. :' )
If there 45 a first stage for the particular choice- f:éqﬁence
considered, the law may specify that the procegs “ends at
that stage, which is then the final stage for Qlat sequence,
If this is not the case we proceed fo the sedond integer of the
choice-sequence, for which the law may an,m correlate either
(i) nothing, or (ii) a second stage whlch 1¢ final, or (ili} a non-
final stage. If case (iii} arises we yroteed to the third integer
of the choice se uence, and so“on If, at any point of this
www . dbraulibrary or
procedure, case {1 anses the’n ithere is said to be no element
corresponding to that pal'tlcular sequence. Thus for any
choice-sequence for whieh case (i) never arises at any stage
we shall obtain 4 $equence of successive groups of signs
correlated to: the successive integers of the choice-sequence.
If case (ii} anses at any stage the sequence of signs so obtained
has a ﬁqte\ number of members; while if case (iii) always
arises"\the sequence obtained has an infinite number of
n\ém vers. There is, however, one restriction on the above
Q JProcess which the law in question must conform to, viz. for
"\ each # > 1, if there is a choice-sequence, 4 say, for which
there is a non-final # — 1 th stage then there is some choice-
sequence B which has the same first » — 1 integers as A
and has some #th {final or non-final) stage correlated to it.
The sequences of signs which are constructed in the above
fashion are called elements of the set. Tt isa direct consequence
of the method of deﬁmng a set that we can never completely
specify all the elements of the set and may not be able to

i
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say, in general, whether some particular sequence of signs
is an element of the set or not. Sometimes it is convenient
to abstract from the particular choice-sequences to which
the elements of a sct correspond and to think of the set as
the process which generates its elements. Thus in the first
use of the term sef we have in view the law by which the
elements of the set can be constructed from choice-sequences ;
in the second use we emphasize rather what it is that these
elements have in common, i.¢, the manner in which all thes;ei .
elements can be obtained irrespective of the particular ch.ng.eﬁ
sequences to which they are correlated. g

Examples of such sets are (i) the set 4 whode elements
are the integers of {. This set can be generited by the
following simple law: * Every choice-seqpajnéé has a first
stage which is final and is for each such éégﬁénce the integer
which comes first in that sequencg,’\:,“gg@ﬁgm e setonf dnfinite
sequences of integers, repetitiong,{’:ﬂl’owed. This could be
generated by the following law, ™ ;‘"For each choice-sequence
the nth stage in the correspof@iing element is the #th integer
of that choice-sequenceg, !i@%tages being final
- j;‘nf’;‘:i :to ;Zmplétf ﬂii account of what the intuitionists
clements of £ Gt m Ee precise what .15 rrfeantlby two

) eysame or different sets being identical and

what ig me i by two sets being identical,

Two el;o(r}ents of sets are said to be identical when we

?Giﬂlaf for every u, the nth stages of both are the same
L mation of signs. Two sets are said to be identical when

i‘:;‘l eeralch element c?f the one set an identical element of the
sel can be given, Sets and elements of sets are called

Mathematical entities,
spi;g:dg;tszzwto .sets, th.e intuitionists have a hierarchy of
S W:h. spezies), The‘ word species is roughly
contexte s 3 propF':rty and is used in the following
: 15 A set p'x, the set species of x is the property

231
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which all those elements of sets possess which are identical
with members of . Thus being a set-species is the property
which all #’s possess which are members of some set ¥, Being
a species of order zero is the property of being either an
element of a set or a set-species. Being a species of order one
is a property of all those properties which {@) can only~t?e
predicated of species of order zero and {) if they hold for
a species of order zero hold for all species of order zercg. which
are identical with it.! Similarly species of ord@’x may be
defined. Species take the place in 1ntu1t10n§t\mathemat1cs
of classes in the formalist and logistic developments of the
subject, )

The peculiar feature of the abové definition of sets is our
inevitable partial ignorance as t?:)'\whlch signs are elements
of the set. We shall know, that some signs are definitely
elements of the set and that other signs are definitely not
of Yiia &P but'{'here may be intermediate cases for
whichitis unposs:blef\o demde This leads to much complexity.
In the case of theutual relationship of two sets, for instance,
whereas in the “olassical theory of sets four cases arise according
as wheth'er’the two sets do or do not, partially or wholly,
includeg iﬁe’mbers of each other, the corresponding cases in
mtu;r.fmmst mathematics may be many more in number.

y be noticed first that two elements of a set are called
}ﬁemnt (Brouwen : verschieden) when it is impossible for
“them to be identical, i.e. when we are certain that it will

~mever be possible, in the course of their development as

sequences, to prove their equality. So for two sets M, NV the
following important cases may arise. (1) It may be impossible
for M, N to be identical—we say M, N are different; (2) M
projects (herausragt) out of N when N has an element which
is different from all elements of M; (8) M, N are congrusnt

* The above definition of species differs from the ome given by
Brouwer in Mathematische Amnalen, vol. xciii, p. 245, but is the simplified
account given by Heyting {loc. cit., p. 167)



CARDINAL NUMBERS 207

when ncither can project out of the other, i.e. when every
property which cannot possibly apply to the elements of the one
cannot possibly apply to the elements of the other; (4) M, N
may be said to be exterior fo one another (elementenfremd) if
they are different and it is impossible for an element of M
to be identical with an element of N. There are exactly
corresponding relations for species.

This complexity is even more apparent at later stages.

~

N

Thus, owing to the complexity of the possible relationships ()

between sets, when the Intuitionist comes to define cardinal’)

numbers as the common property of sets or species whic “eari
be put into one-one correspondence with one anotheroi;;ﬁteaa
of the simple group of relationships >, <, = whik may
hold between cardinal numbers as usually defingd’in mathe-
matical textbooks, four such groups of felations appear,
i.e. four different kinds of equ@lﬁy,dbﬂ@ihiﬁbﬂﬁﬁﬂ:l? these
four groups have many of their progei;;iéé in common.

S
~ R

Intuitionist Theory of Cardinal Numbers
O

In order to show cidatly the divergences between the
intuitionist view as to the validity of mathematical theorems
and the move con{eht'ional ones it will be convenient to start
with the clasgi{a;l’theory of sets of points, for it is here that
‘.the Canto:;‘}heory of transfinite ordinals arises. It will
mcident become clear how the contradictions disappear
for 'tj\bé \Intuitionist,
"H{irs't to deal with Burali Forti’s paradox of the greatest
ordinal number, Some definitions are necessary. In what
fo]-lows, we shall be meaning by ‘set’ what is meant by
this word in the ordinary mathematical use of it, and nof
the special intuitionist meaning.

A set is said to be ordered if there is a serial relation R,
such that it, or its converse, holds between every two elements
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of the set, R being such that «Rbd and dRe¢ implies aRc. A
well-ordered set is one for which every subset hasa first member,
ie. which is a relatum with respect to R for no member of
that subset. Two well-ordered sets, which can be brought
into cne-one correspondence in such a way that, if R is the
ordering relation of the one set and R’ of the other, and 4, & ¢
-any two elements of the one set and &', 3 the correspondm@x
elements of the other set, then &’R'Y is frue when andsonly
when eRb is true, are said to have-the same ordinal number
This account will be accepted in substance by t}{\fe:mahst
who will obtain «w, the ordinal number of the\(We]l -ordered}
series { (see p. 203), as his first infinite orditial nmumber.

To continue with the usual account, tslf*thc matter, if two
ordinal numbers 4 and B are not\gqual one is greater than
the other, say B is greater than #)"This means that 4 can
be brou%ht into a one- one «:c)n’espondence {satisfying the

Ww%gxlfd;ﬂtkilolnlarfy the'fast p’tragraph) with a well-ordered subset
of B. It follows guite Szmply from the above definitions
that every subset oi\a well-ordered set is a well-ordered
set whose ordmal'\i’rtﬁnber is less than, or cqual to, that of the
original set ; Malso that if a new element is added to a well-
ordered sefdn such a way that it is ‘ after’ all the elements
of theoriginal set, the new set is well-ordered and has an

: OrdiQ’ta’I"humber greater than that of the previous set. The

PEN construction of course can easily be made precise.
- "\ » Now on the classu:al view of the theory of sets, a set is
V), ~ well-defined if for every mathematical object it is determined
~ whether it belongs to the set or not, from which we get the
axiom that *if for any mathematical object it 15 determined
whether a certain property applies to it or wob, then theve exists
a sel containing nothing but those objecis for which the property

does hold . This may be called the axiom of tnclusion.

Burali-Forti’s 'pa.radox now arigses in the following way:
consider the set S composed of all the ordinal mumbers
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arranged in order of magnitnde. This set, by the above axiom
of incluston, cxists and can easily be shown to be well-ordered
(by the ordering relation greafer than). Hence it has an
ordinal number which cannot be exceeded in magnitude by
any other ordinal number. On the other hand, since not
all mathematical objects are ordinal numbers, we may choose
one, & say, which is not an ordinal number, and censtruct
a well-ordered set S° by putting « at the end of 5. 5’ will N\
have a subget § and therefore an ordintal number greater than

that of S, 3o the mathematictan is faced with a blank {‘\

L 3

contradictiosn. A\

N 3

This contradiction, however, cannot arise for the i.ntnitiéﬁnst’
who does not recognize the validity of the axiom of ing¢lusion
but builds up 21l his sets on the plan we have alreadydescribed.
The formalist, too, is forced to /modify this @x30m in order
to avoid the paradox of the greabest didinilbrfiymrEdnmelo !
replaces it by “ If for all elements of asef. it is determined
whether a certain property is valid, ﬁéf them or not, then the
set contains a subset containing,‘{i@%}ling but those elements
for which the property does hold " but can give no justifica-
tion for so modifying it, eXcépt that doing so will aveid this
contradiction, \ O\

On the other han,d,:,i»f the intuitionist is correct, nearly the
whole of Cantor.’{':tﬂéory of urdinal numbers is invalid. For
example, on the;,c}assical view sets which have the same cardinal
number ag@?whose ordinal number is e is called enumerably
infinite:and its cardinal number is called N,. Cousider all
tho'se\; otdinal numbers of sets whose cardinal number is No
f‘-ﬂ let us call these ordinal numbers the denumerably
?nfmite ordinal numbers . This is a concept which the
Intuitionist will allow as being clear and well defined. But, in
the uspal theory, it is shown that (a) sets with cardinal number
No can be ordered in different ways to have various ordinal

Y Mathematische Annalen, vol. lxv, p. 263.
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numbers and (b) that for every denumerably infinite set of
such ordinal numbers it is possible to assign a new

- " denumerably infinite ”’ ordinal number not belonging to

the set, from whence it is concluded that the set of denumerably
infinite ordinal numbers has a cardinal number greate’r\\
than W,. This cardinal is called N; and the procgsi is
continued to tha.m a whole series of cardinzl numbcm Na
Ry, - . . Ng» . .. corresponding to different set\&o‘ ordinal
nambers. The intaitionist, however, while accQ?tmg proposi-
tions (&) and (5) says that the proposition ¢\Ny/is greater than
N, " is without meaning. For the mtlgiwnlst indeed there
Is no infinite cardinal number exce t\Ni

It follows from the above cha.tgthé famous problem of the
continuum, viz. the question whether ¢, the cardinal number
of the number of points in A ]jne or the number of real numbers
in an mterval comadesa\zfth N, or with one of the other of

www braulibrar

4

e N car mals m@t\oned above, has no sensc for the
intwitionist. A

Thus if mtuitlomsm is & correct theory, radical alterations
are needed, m “pure mathematics, but it is unlikely that such
a IﬁVOll(tLOn will be accepted by practising experts until
S0 ‘agreement has been reached betwcen logisticians,
fo.l‘\in hsts and intuitionists. And of such concord there is

AN <&t present little sign. Our investigation may therefore suitably
"\ close with a question mark.

\:
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Extensionality, Thesis of, 122-3

Form, see Structure .

Formalism: a working attitude
rather than a philosophy,
14%; ils interprotalion of
mathematics, 148; 1iis re-
lation to the loq ietic and

intuitionist thescs, I1-1Z;
its thesis, 8 : the prodrammf‘
of, criticized 150, 177; the
role of intailion in, and
Want, 190 . i
. Foundations of Mathematics, 103,
: 120
" FrREGE, ., his works, 8, 17
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Function, Mathematical | ‘Ideal elenients * defined, 162 n,
Argument of, defiped, 57 fa) ; . Tdentity incorrectly symbolized

dedinition of, 33 adapted to | in Principia Mathematica,
propesitional  caleulys, &0 - 70-1

intensionai definition of, 57 ;¢ Implication : defined, 43;: how
in the extensinnal conception, symbaolized, 43 ; not an in-

54 its alleged de:ri\-'ation! ternal relation, 43
fromn  prapositional deserip- | Implication, Formal, 67

tions, g5 - DuUre  mathe- | Incommensurablcs - discovered by
maticians'  view of, 56 n, Greeks, 92 ; Endoxgs’ freat- .
Propositional : Fxistence of, | ment, $3 AN
interpreted, 144 . ex- ' Incomplete symbol: defined, 77N
tensicnal, defined, 87 1 how | Moore's definition, 77 AN

many, 1]5: intensicnal | Induetion, - Intuitive,” 81 {W)
definition avoids use of orders, | Induction, Mathematical, 2177
104 ;  itg definition  derived Infinity, Axiom of, 112 A I€placed
from that of mathematics] | by a convention,/194.15
funclion, an ; wecessary | Internal relations defined! 42
restrictions nn istence of, ;" Intuition,” how%éed by Kant,
117 Rusaeils failion, 48-9 1 187 i N

Functions, Propositicnal functions | Intuitionism * and  theory of
of, defined, g7 1 ordinal nimhbers, 155 L.,

Functional CRICUIY, srx Calen]ys . 209200 its  notion  of
of propesitiong lurctions : mathiclralics introduces com-

! PEXEY. 11;  propositional

Gartilgo, 99 ¢ | fculetlug of, 201-7 ;. regards

gcnemlit‘y haw S¥inbolized, 8;5 i \\,w\it}ahmiihlmm-oﬁgdﬂem as
eneral stuter fave meaning | WO Incaningless, 2100, rolation

only if verifialie, 10, jug ISt formalist and  logistic

Gcomlnfry: Current in_t‘eqar'etav.['* thescs, 11-12;  theorv of
tlpn_ of raiare of, 138 ; howy | cardinal numbers, 207 : thesis
distingnished rom otHer | of, §

Iranchey af um-thez;‘%fias, ) ‘Intuitive,’ how used in text, 86

i58 ; Uatire ofu\c:ftrly, !

552(1;. - uoln-Iiuc] icles 136  Jonxson, W, E., his * characteriz-

raditicnal plan G senia- | ing tie’, 70

tion, 153 N . i '
GLI\-’ENI\'O, V., of relation be. !

Krokuckrr: declares only natural

EW_et_“.n _An.atr;_-te’]ja.n and in- | numbers reaj, {75 : reduction
ultmmst:l‘np’c, 201 n. i of negative numbers  1g

Giéngy, 1{.:'11\1"@[)f that proofs of i algebraie tongriences, 176
the FRASSteRey  of mathe. !
ll'n Je.:;‘é,'_eat[tocomra:{iciions, ' LERmScur, identifics  existence
/ i and  Ireedom from  con-
tradiction, 185

HAJ’J;&H 0 gnpten T3 .
CAEMANT ¢ poure, Bornr, 184 i1 TEBNIZ, researches in symbolism,

< \::ﬂx_a_r_ninas FOnseqnences f jp. 16, 17
Y titionism, jqs i s, i isti
\ Hicy e p t_ﬂ‘l&‘: . Lewis, €. L., his nse of ¢ logistic ’,
o A, L_Is formiat talenlug 135
HILBERT‘LH%OPIH logic, 201-9 Togie: distinction between
163—:7- Eeg;:otrq ]syst?ln, | systematic ang philosophic,
S . ] 5, Aot s 18 R
Coverins 1B flocal o gyge | 140-2 ; Post-Aristotelinn view
oo VB restrictiong on | of itz nature, 4]

-Dgrieal construction, 35

Propositiona) caleulus, 33 . | 1
I

use LI ¢ T T : P .
of \Glleténdlgkelt | logical  form, described, 41;

n ;
Hongqy E W & . . Russel)'s definition, 49 p.
m-'itjhm-i-]ari'i ff“‘ﬁ CGﬂ_Ceptlcu of 1+ Logistic,’ how used in fext, 15
H}’POtheses diz’?izfrlrm'C}mn’ 81 | Logistin school: its constroction of
Principles é gWisked  from | cardina] uinbers, 18%: jtg
: | Programme, 7 . relation to
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formalism and intuitionism,
11-12

Logistic thesis, The: criticized by
Poincaré, 177 ; opposed by
Wittgenstein, 132-3: re-
jected in text, 142, 144

Logistic views of mathemartics,
their history, 15-19.

Macu, E., his view of science,

159 n.

Manipulation, Rules of, 46

MMathematical  discovery in-
voéves a process of synthesis,
17

Mathematics, a: social activity,
10; Static and dypamie

attitudes towards, 170

Mathematics, Pure: a branch of
logic, 8; a series of hypo-
thetical deductions from un-
interpreted axioms, 37, 148 :
its formal character, 37—40

Matrices, 102

Measurement, how introduced
into pure geometry, 91

¢ Metamathematics * defined, 149 «

w v witmraylifraEy g n;

tailing relation, 43 n. ,»hls
analysis of ex1stentml’ NBIro-

positions an exa.mpié of
logical analysis, 347 his
definition  of Midcomplete
symbol, 77 \

Multlphca.twe ZERMELU'S,
axiom, 8‘3\ criticized by
BoreL, /84

Multlpllmty, Loglcal and logical
form\42 n.; defined, 33

Iﬁum’b}r, Cardinal, defined, 180
\mfbcr Ordinal : Contradiction
. as:»omated with, 99 ; defined,

*

R ” Number Real (Note: Technical
L) use of ‘ real 'y, 85:
¥y Dedekind’s definition, 94-5 ;

mathematical consequences,
96 ; regarded as provisional
by himself, 96-7

Orders : methods for avoiding use
of, 103 ; Principia definitions
of, 102-3

Paradoxes, Logistico-mathe-
matical, 87. See alse Con-
tradictions

Prawo, G, 8: his researches, 18

N ticians,
and extN

INDEX

Frzce, C. 5., 17
Philosophy, its
critic, 1
Prawck, M., describes invention

of the quantum, [30
Pomvcars, H.: aceused Lo

function as

ticians

of circularity, ;o sup-
ported an intuitionist
position, 178

Positivists, The logical, 122, 128

‘ Primitive propositions,” 15, 7%

Principia  Mathematica :
identity, 70-1; convaations
of scope, 74; insu c,iémtly
precise, 49, 139 N Tap”’
notation for funct!{m 53 n.:

its dlstmutmnvbm\wm M-

plete and chQﬁplf‘ symibols
criticized,¢ © primitive
propom’gé\ i3, its

prmmples of !113.1“"m1l=ution
ifts use of bracket dots,
44’\§ wpurpose of, 18; sob-
sequcnt attempts at improve-
NN\ment, 18; the culminating
Vachievement of ihe logis-
8: muse of orders
criticized, 103 ; various
criticisms, 140
Principles, distinguished
hypotheses, 2
Propoesitional calculus, 41-7: a
specimen proof, 46-7 ;
definition, 42; incomplete-
ness of, 167 ; its advantages,
45 ; Principia account un-
satisfactory, 141

from

Quantifiers :  definition of, 63;
order of, needs consideration,
65 ; scope of, defined, 85

Ramsey, F. P, 119—1_21 :
definition of truth functions
of propositional functions,
120} extensional notion of
prupo‘ntmnal functiom, 56 n. ;
fallacious proof that axiom
of reducibility contingent.
117 ; his ~account  of
formalism criticized, 20 n.;
his method for avoiding intro-
duction of orders, 103, on
the inluitionist school, 188 1.

Reducibility, Axiom of : argrments
for, 1i2; as a dogma, 5:
CHWISTEK'S mterpretdtmn.
136 ; criticized, 117 ;
descnbed 111; implies
existence of ¢ proposmona]
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functions, 115; involved in
Principia definition  of
identity, 71; neutralizes
theory of types, 113 ; rule for
constructing symbols, 114
Relations, Internal, defined, 42
RusseLL, B.A. W.: contradictions
invented by, 98-9 ; definition
of form, 48 n. ; definition of
propositional function, 48-9
definition of pure mathe-

maties, 7; modification of
DEDERIND’'S  definition of
real aumber, 111: on

Achilles and the Tortoise,
n,; on classes, 80 n.:

views concerning the forms of

Propuositions crificized, 6%

SaccuERI, G., tries to prove the
parallel axiom, 155

ScHrRODER, E., 16

Science :  Brouwer's conception,
192 ; how it develops, 159
increasing  concern  with
structure, 147

Scope, of quantifiers, defined, 65

Semantics, 137. Sze also Meta-
mathematics

Sets, Intuitionjst definition of, 203¢

Sets of points, Theory of, 178183
pecies * or property,

definition of, 205 \
cture; of symbqls,\sup
pressed, 27; T ofs systems,
described, 24_5 X\

Symbol, its logical type, 50

Symbol, Logicallg., misleading,
definition afy (35

Symbolizing. method for ; all, 63 ;
and, " brackets,
classeN73 . definitions, 44 ;
desﬁxipt’ions, 70 equivy
l,en'\c\e, 44 ; tmplins, 43 ; ne

or

i3 o, i3 ; sHccessit .
¢\ Quantifiers  of ‘sume king,
S\ TYRREN a4, 63; the o

\ ) t.z:kickts?tisﬁes éx, 7”2; the
¥ satisfying Px, 73
S}‘mbols, Incomplete ; defined jn

4 defined ip

Biipia dml'c‘athematica, 76

efinition, 77

ontologica} status, 79,
8

the‘ii:
» COmpareq i
lang'llages} 24 P with

Intuitionist

44

210

Tautologies defined, 45
Tractatuy Logico-Philosophicus,
19; and multiplicity, 42
Type, Logical, of symbols de-
fincd, 32

Types : Confusion of, in notion of
the ‘extended infinite ’, 108,
in theorem of upper bound,
107 ; how  treated in
Principia Mathematica, 111

neutralized by axiom of\\
reducibility, 113 ; supple.
mented by hierarchy{ ‘ef)
orders, i0i ; to restrict use of
class symbols, 83 Y
Truth funcfion defined /604
Truth value defined ’

* Urintuition,’ see‘B?sz:i intuition

Vagueness, 100NN

Values, o N\,2  mathematical
functién, defined, 56 (£}

Valuesi%(a{ @ variable, defined, 50

Variap s definition, 50; de-
finitl .Sfgviriation,
W,\:{.\% H ol?vij%?c%rring in de-

O ductive systems, 39; their

™ usages, 51-3, apparent, 53,

> determinative, 52, formal,
53, illustrative, 51

* Wahifolge,” see ! Arbitrary choice
sequences *

Waisuann, F,, fallacions proof of
contingency of axiom of
reducibility, 117

WEIERSTRASS : researches in the
theory of functions, 174 ;
tried to reduce all mathe-
matical entities to natural
numbers, 175

t Weyr, H, 124-§ .
tradiction, 98 ;
o Brouvwer's
88 n.

WHITEHEAD, AN, 8

WITTGENSTEIN, L., 128134 : In.
debtedness  of authar to,

6 n. ; rejects identity, 71 n.

Word order, 28

ZENO, his paradox of Achilles and
the Tortoise, 90

ZERMELD, his axiom, 183 ;
stitute for axiom of
clusion, 209

his con-
solved, 101
continuum,

Types, Theory of : first part, 101 ;
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GENERAL AND DESCRIPTIVE N

The Mind and its Place in Nature. By C. D. Broad. £1 15s.¢\)

Thought and the Brain. By Henri Piéron. Translated by C.#K. Ogden.
£1. £
The Nature of Langhter. By J. C. Gregory. 18s:'0

W

The Mind and its Body: the Foundations of Ps’ycﬂdlogy. By Charles
Fox, [15s.

\/
The Gestalt Theory and the Problem of ‘ébnﬁguration. By Bruno
Petermann, llustrated. £1 53, O

Invention and the Unconscious, By J (M. Montmasson. Preface by

wwhlﬁkﬂﬁﬁﬁrﬁﬁﬁ@lﬂ. £1 3s, ..:'."fz ’
Principles of Gestalt Psychologys 3By K. Koffka. £2 2s.

The Neurojogical Theory of Pei‘ééf)tian. By J.R. Smythies, fn preparation.
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«\" EMOTION

Integrative Psychology: a Study of Unit Response. By William M,
Marston, C{Daly King, and E. H. Marston. £1 10s.

Emotion apdMfisanity. By S. Thalbitzer, Preface by 1. Hofiding.
1ds, &

The L(%B}Feeling. By F. Paulhan. Translated by C. K. Ogden. 18s,

Theffsychology of Consciousness,. By C. Daly Kipg. Introduction by
AW, M, Marston,  £1. .

\{‘!easure and Instinct: a Study in the Psychology of Human Action.
By A. H. B. Allen, 17s. 6d,

PERSONALITY

The Psychology of Character: with g Survey of Personality in General.
By A. A. Roback. Revised Edition. £2 3s.
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Problems of Personality: a Volume of Essays in honour of Morton
Prince. Edited by A. A. Roback. £1 8s.

Personality, By R. G. Gordon.  £1 3s.

Constitution-Types in Delinquency: Practical Applications and Bio-
physiological Foundations of Kretschmer’s Types. By W. A.
Willemse. With 32 plates and 19 diagrams. £1.

Conscious Orientation. Studies of Personality Types in Relation to
Neurosis and Psychosis by J. H. Van der Hoop. £1 3s. \\“
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ANALYSIS \/

The Practice and Theory of Individual Psychology. xB{'\}’&;M'red Adler
£1 5s. L&

Psychological Types. By C. G. Jung. Translated with a Foreword by
H. Godwin Baynes. £1 12s. \

Contributions to Analytical Psychology. Byb
by H. Godwin Baynpes. £1 8s. WO

: j ious: itical Es iti f the Psycholo
Character and the Unconscious: a Crlucz&%ﬁz{#g@&gpgﬁrg{gn ¥ 44

G. Jung. Translated

of Freud and Jung. By ). H..A8N'C
The Development of the SexyaMmpulses, By R. E. Money-Kyrle.
£1. Ny
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The Psychology of a Musical Prodigy. By G. Revesz. With a portrait
and many mysjedl illustrations. 16s.

Colour-Blind ess\ ‘with a Comparison of different Mctl_‘nods of Testing
Colour&Bﬁhdness. By Mary Collins. Introduction by James

Dre\m{wi 18s.
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<‘{ o LANGUAGE AND SYMBOLISM
The Symbolic Process, and Its Integration in Children. By J. F.

Markey. 14s.
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The Meaning of Meaning: a Study of the Influ e g

Thought and of the Science of Symbolism. By _ r
L. A.g Richards. Supplementary Essays by B. Malinowski and

F. G. Crookshank. £1 8s.
3



Bentham’s Theory of Fictions. Edited with an I[ntroduction and
Notes by C. K. Ogden. With three plates. £1 ls.
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By Karl Maanbeim. £1 8s.

Charles Peirce’s Empiricism, By Justus Biichler. £1 is.

The Philosophy of Peirce. Selected Writings., Edited by Justus
Biichier. £1 8s.
Ethics and the History of Philosophy: Selecied Essays. By C. D,
Broad. £1 3s. &
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Theory of Perception. By Martin E. Lean. £1 1s. _{M™)

What is Valme? An Essay in Philosophical Analysis. By Everett W.
Hall. £1 5s. N
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C. D. Broad. £1 5s. o\

The Structure of Metaphysics. By Morris Lazérowitz. £1 5s.

LoGic L~

Tractaius Logico-Philosophicus. By,’l\f#Wittgenstcin. German text,
with an English Translation e reégard, and an fntroduction by
Ber(i andl,%x_lasselﬁlﬁ. FRS, £1L.3°

Fhubdations o é%i)mge'try and-Jitduction. By Jean Nicod. With an
Introduction by Bertrand“Russell, F.R.S. £1 3s.
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Ramsey. Edited byR. B. Braithwaite. Preface by G. E. Moore.
€ \v/
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£1.
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Scientific Thought: a Philosophical Analysis of some of its Funda-
mental Concepts in the light of Recent Physical Developments.
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Dynamic Secial Research. By John T. Hader and Eduard C. Lindernan,
I8s, '

The Sciences of Man in the Making: an Orientation Book. By E. A,
Kirkpatrick, £1 5s.

The Doctrine of Signatures, A Defence of Theory in Medicine, By
Scott Buchanan. 16s.

The Limits of Science: Outline of Logic and of the Methodology of
the Exact Sciences. By Leon Chwistek. Introduction and
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An Historical Introduction to Modern . Psychology. By E':C}arclme:r
Murphy. With a Supplement by H. Kluver. £3. A\
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By F. A.Lange. With an Introduction by BertrandRussell. £1 15s.

Philosephy of the Unconscious. By E. von Harfmiann. £ 15s.

Outlines of the History of Greek Philosophy, .\ By E. Zeller. New
edition, re-written by Wilhelm Nestle and tr,ail\\Iéitcd by L. R. Palmer,
£l 35. i\ v

Psyche: the Calt of Sculs and the Beiic{f\in: Immortality among the
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Plato’s Theory of Ethics: The Moral€riterion and the Highest Good.
By R. C. Lodge. £1 125, 3%

Plato’s Theory of Education. By»R>C. Lodge, F.R.S. (Canada). £} 3s.

Plate’s Theory of Art. By R{E. Lodge. £1 5.

The Philosophy of Plato. By.R. C. Lodge. £I 8s.

Plato’s Phaedo. A tfdnslation with an Introduction, Notes and
Appendices, by RAS. Bluck. £1 Is.

Plato’s Theory of Kmewledge. The Theactetus and the Sophist of Plato.
Translated, with”a Running Commentary, by F. M. Cornford.
£] 3s. 7,

Plate’s Coslglilﬁgy: The Timaeus of Plato. Translated, with a Runnin g
Commgntary, by F. M. Cornford. £1 10s.

Plato and Parmenides. Parmenides’ ““ Way of Truth ** and Plato’s
. ‘(Parmenides *, Translated with an Introduction and Runping

\dementary, by F. M. Cornford. £I 3s.
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Analysis of Matter. By B. Russell.

Art of Interrogation. By E. R. Hamilton.

Chance Love and Logic. By C. S. Peirce.

Child’s Discovery of Death, By Sylvia Anthony.

Colour and Colour Theories, By Christine Ladd-Frankiin.
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Communication. By K. Brition.

Comparative Philosophy, By P. Masson-Oursel.

Concentric Methed. By M. Laignel-Lavastine.

Conflict and Dream. By W. H. R, Rivers,

Creative Imagination. By June E. Downey. _
Crime, Law and Social Science, By J. Michael and M, J. Adler.
Dialectie. By M. J. Adler.

Dynamics of Education. By Hilda Taba.

Effects of Music. By M. Schoen. \<
Emotions of Normal People. By W. M, Marston. A\
Ethical Relativity. By E. Westermarck. W)

Growth of Reason. By F. Lorimer. @
History of Chinese Political Thought. By Liang Chi-Chao. A3
How Animals Find their Way About. By E. Rabaud. ,'\\ ¢
Human Speech. By Sir Richard Paget. (¢
Law and the Social Sciences. By H. Cairns. \Y;
Measurement of Emotion. By W. Whately Smith.
Medicine, Magic and Religion. By W. H. RwerS\\'
Mencins on the Mind. By 1. A. Richards. _.\*
Misuse of Mind, By K. Stephen. N/
Nature of Intelligence. By L. L. Tburstone
Natore of Learning, By G, Humphreyx ™
Nenrat Bisio of Hufgught R By G. G, ’Camplon and Sir G. E. Smith.
Neurotic Personality. By R. G. Govrdon.
Philosophy of Music. By W.Pole.
Physique and Character. B§ E. Kretschmer.
Possibity, By Scott Buchanar,
Primitive Mind and Modern Civilization, By C. R. Aldrich.
Principles of Experittental Psychology. By H. Pieron.
Problems in Psychopathology. By T. W. Mitchell.
Psychology andiPolitics, By W. H. R. Rivers,
Psychology of(Emotion. By I. T. MacCurdy,
Psycholo};{of Intelhgence and Will. By H. G. Wyatt.
Psychol@y of Men of Genius. By E. Kretschiner.
xa];:o}ogv of Philosophers. By Alexander Herzberg.
Psy ology of Reasoning, By E. Rignano.
\Esychology of Religious Mysticism. By J, H. Leuba.
sychology of Time. By Mary Sturt.
Scientific Method. By A. D. Ritchie.
Social Basis of Consciousness. By T. Burrow,
Social Life in the Animai World, By F. Alverdes.

Statisticat Method in Economics and Political Science. By P. Sargant
Florence,

Technigue of Controversy. By B. B. Bogoslovsky.

Telepathy and Clairvoyance. By R. Tischner.

Trauma of Birth. By O. Rank,
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